
Characterization and Prediction of Deep Learning Workloads in
Large-Scale GPU Datacenters

Qinghao Hu
1,2

Peng Sun
3

Shengen Yan
3

Yonggang Wen
1

Tianwei Zhang
1∗

1
School of Computer Science and Engineering, Nanyang Technological University

2
S-Lab, Nanyang Technological University

3
SenseTime

{qinghao.hu, ygwen, tianwei.zhang}@ntu.edu.sg {sunpeng1, yanshengen}@sensetime.com

ABSTRACT
Modern GPU datacenters are critical for delivering Deep Learn-

ing (DL) models and services in both the research community and

industry. When operating a datacenter, optimization of resource

scheduling and management can bring significant financial bene-

fits. Achieving this goal requires a deep understanding of the job

features and user behaviors. We present a comprehensive study

about the characteristics of DL jobs and resource management.

First, we perform a large-scale analysis of real-world job traces

from SenseTime. We uncover some interesting conclusions from

the perspectives of clusters, jobs and users, which can facilitate the

cluster system designs. Second, we introduce a general-purpose

framework, which manages resources based on historical data. As

case studies, we design (1) a Quasi-Shortest-Service-First scheduling
service, which can minimize the cluster-wide average job comple-

tion time by up to 6.5×; (2) a Cluster Energy Saving service, which

improves overall cluster utilization by up to 13%.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies;Machine learning approaches; Simulation evaluation.

KEYWORDS
GPU Datacenter, Cluster Statistical Analysis, Deep Learning Train-

ing, Cluster Management System, Workload Scheduling, Energy

Conservation, Time-series Prediction

ACM Reference Format:
Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang.

2021. Characterization and Prediction of Deep LearningWorkloads in Large-

Scale GPU Datacenters. In The International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’21), November 14–19, 2021,
St. Louis, MO, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3458817.3476223

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00

https://doi.org/10.1145/3458817.3476223

1 INTRODUCTION
Over the years, we have witnessed the remarkable impact of Deep

Learning (DL) technology and applications on every aspect of our

daily life, e.g., face recognition [65], language translation [64], adver-

tisement recommendation [21], etc. The outstanding performance

of DL models comes from the complex neural network structures

and may contain trillions of parameters [25]. Training a production

model may require large amounts of GPU resources to support

thousands of petaflops operations [15]. Hence, it is a common prac-

tice for research institutes, AI companies and cloud providers to

build large-scale GPU clusters to facilitate DL model development.

These clusters are managed in a multi-tenancy fashion, offering

services to different groups and users based on their demands, with

resource regulation and access controls.

A job scheduler is necessary to manage resources and schedule

jobs. It determines the resource utilization of the entire cluster, and

job performance, which further affects the operation cost and user

experience. Understanding the characteristics of DL workloads is

indispensable for managing and operating GPU clusters. DL jobs

share some similar features as conventional HPC workloads, which

are generally different from big data jobs in cloud computing (e.g.,

MapReduce). (1) Iterative process [46, 56]. Similar to some numerical

simulation and analysis jobs in HPC, typical DL training jobs are

also iterative computation. The target model is obtained through

the gradient descent update iteratively and the long-term training

process can be suspended and resumed via checkpoints. (2) Gang
scheduling [26]. DL training jobs require all the GPUs to be allo-

cated simultaneously in an all-or-nothing manner [18, 78]. This

may cause resource fragmentation in GPU clusters. (3) Exclusive
allocation [31, 39]. The GPU resources are allocated exclusively in

DL datacenters. Although the advanced NVIDIA Multi-Instance

GPU (MIG) technology [5] provides intrinsic hardware-level sup-

port for fine-grained sharing on NVIDIA A100 GPUs, existing GPU

datacenters built with previous-generation GPUs typically only

support coarse-grained GPU allocation [81].

Furthermore, DL training jobs also exhibit some unique features

different from most HPC or big data workloads. (1) Inherent hetero-
geneity [77]. DL training jobs typically require a number of GPUs

as the dominant resources, as well as associated resources such as

CPUs and memory. (2) Placement sensitivity [46]. Multi-GPU jobs

usually perform gradient synchronization to update model parame-

ters at the end of each iteration. Better interconnect topology can

achieve lower communication overhead and faster training speed

for multi-GPU jobs. Meanwhile, colocating multiple jobs in one

server could cause performance degradation since the interference

of system resources like PCIe bandwidth [39]. (3) Feedback-driven

https://doi.org/10.1145/3458817.3476223
https://doi.org/10.1145/3458817.3476223
https://doi.org/10.1145/3458817.3476223
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SC ’21, November 14–19, 2021, St. Louis, MO, USA Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang

exploration [77]. To train a model, users typically try several con-

figurations, and use early feedback from these jobs to decide which

one should be kept or killed. This gives higher cancellation rates in

GPU clusters [39].

A variety of works proposed new schedulers specifically for GPU

clusters to achieve higher performance, resource utilization and

fairness [31, 46, 52, 78, 84]. To adapt to the characteristics of DL

workloads, these works adopt the Philly trace [39] from Microsoft

GPU cluster for design and evaluation. To the best of our knowledge,

the Philly trace is the only publicly available DL workload dataset

so far. However, analysis of only this trace may be inadequate to

prove the generality of the designs and can cause the overfitting

issue, as pointed in [9, 55]. In addition, this trace was collected in

2017. Due to the rapid development of DL technology and demands,

this trace may not be able to reflect the latest characteristics of DL

jobs anymore.

In this paper, we present an in-depth study about the charac-

terization of DL workloads and scheduler designs. Our study is

based on a new set of DL job traces collected from a datacenter in

SenseTime, named Helios. These traces have the following benefits.
(1) They were collected over six months in 2020, which can repre-

sent the emerging DL algorithms and models. (2) They incorporate

more than 3 million jobs among four independent GPU clusters.

These jobs exhibit high variety, covering different types (training,

inference, data preprocessing, etc.), applications (computer vision,

natural language processing, etc.), and purposes (product devel-

opment, research etc.). (3) These traces include rich information,

which enables thorough analysis from different aspects, and diverse

evaluations of scheduling systems. It is worth noting that we do

not aim to compare our traces with Philly and show the advantages.

Instead, we release our traces and expect they can be an alternative

to Philly. Our traces together with Philly can increase the diversity

of job workloads to enable more general design and evaluations

(as we will do for our prediction framework in this paper). We also

hope this can inspire other organizations to release their job traces

to benefit the community of deep learning systems.

Based on the traces, this paper makes two key contributions.

First, we perform a large-scale analysis of the DL jobs in the four

clusters, from the perspectives of jobs, clusters and users. Prior

works [39, 73] only focused on the job-level characterization. Our

study provides more extensive analysis about the behaviors of GPU

clusters and users. Through our analysis, we identify seven new

implications, which can shed light on the design of GPU clusters.

Second, we introduce a novel prediction-based framework to

manage compute resources and schedule DL jobs. This framework

is inspired by some implications from our trace analysis: the char-

acteristics of clusters and jobs exhibit obvious predictable patterns,

which gives us the opportunities to forecast those behaviors in

advance and then optimize the management of jobs and resources.

This framework can be integrated with different services. Each

service builds a machine learning model from the historical data,

and predicts the future states of the cluster, or upcoming job in-

formation. Based on the prediction results, the service can make

optimized actions for resource and job management. To maintain

prominent performance, the prediction model is also kept updated

with new data. We present two services as case studies: (1) A Quasi-
Shortest-Service-First scheduling service can assign each new job a

Table 1: Configurations of four clusters in Helios (All data
are collected on September 1st, 2020, except # of jobs and
VCs, which cover the period of April-September, 2020).

Venus Earth Saturn Uranus Total

CPU Intel, 48 threads/node Intel, 64 threads/node -

RAM 376GB per node 256GB per node -

Network IB EDR IB FDR -

GPU model Volta Volta Pascal & Volta Pascal -

of VCs 27 25 28 25 105

of Nodes 133 143 262 264 802

of GPUs 1,064 1,144 2,096 2,112 6,416

of Jobs 247k 873k 1,753k 490k 3,363k

priority score based on the historical information. It then schedules

the jobs based on these priority scores, which can reduce the queu-

ing delay by up to 20.2× and improve the overall job completion

time (JCT) by up to 6.5×. (2) A Cluster Energy Saving service can

proactively predict the demanded compute nodes in advance, and

then leverages the Dynamic Resource Sleep (DRS) technique to

efficiently power off the unnecessary nodes. It can improve up to

13% of node utilization rate and conserve millions of kilowatt hours

of electricity annually across the four clusters.

2 BACKGROUND
In this section, we first introduce our GPU datacenter, dubbed

Helios (§2.1). Then we describe the DL workloads running in this

datacenter (§2.2) and the corresponding job traces (§2.3).

2.1 Helios Datacenter
Helios is a private datacenter dedicated to developing DL mod-

els for research and production in SenseTime, containing multi-

ple multi-tenant clusters. In this paper, we select 4 representative

clusters: Venus, Earth, Saturn, and Uranus. Table 1 shows the con-
figurations of each cluster. Note that Saturn is a heterogeneous

cluster with mixed NVIDIA Pascal and Volta GPUs, while the other

three clusters are composed of identical Volta or Pascal GPUs. Our

conclusions from the analysis of these 4 clusters are general for

other clusters in Helios as well.

Each cluster in Helios serves multiple groups in SenseTime

concurrently. To support resource isolation and management for

multi-tenancy, a cluster is further divided into several Virtual Clus-

ters (VCs), and each VC is dedicated to one group with its demanded

resources. All GPUs within one VC are homogeneous. Each node

is exclusively allocated to one VC, and over-subscription of GPU

resource quota is not enabled in Helios. Configuration of a VC can

be dynamically changed in three situations: (1) when the demand

of a group is increased, new servers will be purchased and allocated

to its VC, or form a new VC; (2) when a group is less busy, the size

of its VC may be scaled down; (3) when groups are combined or

split, their VCs are also merged or split correspondingly.

To reduce the communication overhead in distributed workloads,

GPUs are interconnected to each other via a hierarchic network: (1)

intra-node communication is achieved via the high-bandwidth and

low-latency PCIe (for Pascal GPUs) or NVLink (for Volta GPUs)

[7] ; (2) inter-node communication within the same RDMA domain

Characterization and Prediction of Deep Learning Workloads in Large-Scale GPU Datacenters SC ’21, November 14–19, 2021, St. Louis, MO, USA

is achieved via the high-speed InfiniBand. To improve the work-

load performance and reduce network interference, cross-RDMA-

domain distributed training (communication through TCP/IP) are

not allowed in Helios.
The distributed storage system is also critical for workload per-

formance. To support the massive data throughput in DL jobs,

Helios adopts Lustre [2] as the file system, and the input data for

the jobs are stored in Ceph [75] as the object storage. In addition,

Memcached [3] is used to accelerate data access.

The Slurm workload manager [79] is adopted to regulate the

resources and job execution. Specifically, it dynamically adjusts

the configurations of VCs, including the resource quota in each

VC, total number of VCs, job time limit, etc. Meanwhile, it is also

responsible for the online scheduling of DL jobs, following three

steps. (1) A user submits his or her job to a VC with specified job

resource demands (e.g., numbers of GPUs and CPUs). If the CPU

requirement is not specified, the scheduler will allocate CPU cores

proportional to the requested GPU counts. (2) Slurm maintains a

separate allocation queue for each VC (VCQueue), and selects jobs

for scheduling. All jobs in one VCQueue have the same priority

setting so the scheduling order is only determined by the job’s

submission time. (3) Slurm allocates jobs in a consolidated paradigm

by packing jobs into as few nodes as possible. A user can also select

specific nodes if he or she has special topology requirements. For

instance, some exploratory jobs are placed across specific numbers

of nodes for testing the performance impact of GPU affinity. Only

0.15% of the jobs are placed in a way customized by the users. After

the job is scheduled, it keeps running until completion or being

terminated by the user. Preemption is not supported in Helios.

2.2 Workloads in Helios
Helios supports various types of jobs in the DL development

pipeline, e.g., data preprocessing, model training, inference, quan-

tization, etc. These workloads are submitted by product groups

for developing commercial products, as well as research groups

for exploring new technologies. They range over different DL do-

mains, including computer vision, natural language processing,

reinforcement learning, etc.

A majority of the GPU jobs are DL training, which mainly fol-

low an iterative fashion [31]: the training task consists of many

iterations, where gradient descent is applied to update model pa-

rameters based on the mini-batch data in each iteration. To scale

with complex models and large datasets, many jobs adopt the dis-

tributed data-parallel training scheme across multiple GPUs. In

each iteration, every GPU processes a subset of data in parallel and

then performs gradient synchronization to update model param-

eters. This synchronization typically adopts the parameter sever

[44] or all-reduce strategy for high-speed multi-node/multi-GPU

communication (e.g., NCCL [4] as backend). Users mainly adopt

the built-in libraries (e.g., DistributedDataParallel in Pytorch, Mul-

tiWorkerMirroredStrategy in Tensorflow) to implement their jobs.

In addition, there are also a quantity of jobs for data/model

preprocessing and postprocessing. For instance, some CPU jobs

generate large-scale training datasets by extracting frames from

videos; some jobs rescale the images according to the model’s re-

quirements. To speed up model inference, it is common to perform

post-training quantization to reduce model size before deployment.

Table 2: Comparisons between Helios and Philly traces.
Helios Philly Helios Philly

of clusters 4 1 Duration 6 months 83 days

of VCs 105 14 Average # of GPUs 3.72 1.75

of Jobs 3.36M 103k Average Duration 6,652s 28,329s

of GPU Jobs 1.58M 103k Maximum # of GPUs 2,048 128

of CPU Jobs 1.78M 0 Maximum Duration 50 days 60 days

2.3 DL Job Traces from Helios
We collect jobs from each of the 4 clusters in Helios, which serves

as the basis of our analysis and system design in this paper. These

four traces span 6 months from April 2020 to September 2020,

covering a total of 3.36 million jobs over 802 compute nodes with

6416 GPUs. Each trace contains two parts: (1) We collect the job

logs through the Slurm sacct command, which provides the rich

information for each job. (2) The daily VC configurations of each

cluster from Slurm. Besides, we leverage node allocation details

from the job logs to infer the timing information for each cluster.

To the best of our knowledge, this is the largest set of DL job

traces, and also the first one with comprehensive types of jobs in

addition to DL training. We release these traces to the research com-

munity, and expect they can benefit researchers for DL workload

analysis and design of GPU datacenter systems.

2.3.1 Terminology. We emphasize some terminologies in the job

traces, which will be widely mentioned in our following analysis.

Job status: a job can end up with one of five statuses: (1) com-

pleted: it is finished successfully; (2) canceled: it is terminated by

the user; (3) failed: it is terminated due to internal or external errors;

(4) timeout: the execution time is out of limit; (5) node fail: it is

terminated due to the node crash. Timeout and node fail are very

rare in our traces, and will be regarded as failed in this study.

CPU job: this job is executed without any GPUs (e.g., image

preprocessing, file decompression).

GPU job: the job needs to be executed on GPUs for acceleration

(e.g., DL model training, model evaluation).

GPU time: this metric is used to quantify the amount of GPU

resources required by the job. It is calculated as the product of total

execution time and the number of GPUs.

CPU time: this is the product of total execution time and the

number of CPUs. It is only considered for CPU job analysis.

Cluster utilization: this metric is used to characterize the re-

source utilization of a cluster. Since GPUs are the dominant re-

sources in DL jobs, we calculate the cluster utilization as the ratio

of active GPUs among the total GPUs in the cluster.

2.3.2 Comparisons with the Philly Trace. Microsoft released a trace

of DL training jobs from its internal cluster Philly [39]. It is currently

the most popular public trace containing rich information about

production-level DL training jobs. A quantity of works on GPU

resource management and optimization leveraged this Philly trace

for analysis and evaluation [31, 34, 46, 52, 58, 78, 84].

DL has experienced rapid development over the years. New mod-

els and algorithms are emerging with increased resource demands

[15, 25]. There is a 10.5× year-by-year increase in the number of DL

jobs in Microsoft datacenters [31]. Hence, the Philly trace collected

in 2017 may not be able to accurately reflect the characteristics of

SC ’21, November 14–19, 2021, St. Louis, MO, USA Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang

100 102 104 106

GPU Job Duration (s)

0

20

40

60

80

100

Fr
ac

tio
n

of
 J

ob
s

(%
)

(a)

Helios
Philly

Helios Philly
Datacenter

0

20

40

60

80

100

Fr
ac

tio
n

of
 G

PU
 T

im
e

(%
)

51.3

31.3
39.4

32.6

9.3

36.1

(b)

Completed
Canceled
Failed

Figure 1: Comparisons of job characteristics between Helios
and Philly. (a) The CDFs of the GPU job duration. (b) Distri-
bution of GPU time by the final job status.

modern GPU clusters and DL jobs. We expect our trace can fill this

gap with a larger number of jobs and the latest DL models and algo-

rithms. We present detailed comparisons between our Helios trace
and Microsoft Philly trace. Although the Philly trace ranges from

August 2017 to December 2017, jobs in the first two months exhibit

abnormal behaviors (much less density and different features). So

we select the period of October 2017 to December 2017 with 103,467

jobs, which was also adopted in the original paper [39].

Table 2 summarizes the comparisons between Helios and Philly
traces. Our traces are collected from 4 independent clusters, while

the Philly trace only describes one cluster. Helios contains 32.6

times more jobs than Philly and around half of jobs from Helios
are CPU jobs. We will reveal some interesting insights through

analyzing different characteristics of CPU & GPU jobs in §3, which

cannot be learned from Philly. Moreover, the average number of

GPUs required by our GPU jobs is over twice that of Philly. The

maximum number of requested GPUs from our traces is 2048, which

is an order of magnitude higher than Philly. These indicate that our

traces provides new features of GPU clusters and jobs, which can

increase the plurality and generality in DL system research.

We calculate the average duration of GPU jobs from Helios,
which is much lower than Philly. There are three possible reasons:

(1) Philly adopted A YARN [70] to schedule jobs, where failed jobs

would be retried for a fixed number of times. Such retrials were

counted into the entire job duration, statistically resulting in longer

execution time. For instance, the longest job took about 60 days

for a total of 3 attempts due to job failures, although the successful

execution only took around 25 days. If we profile the Philly trace by

regarding each attempt as an individual job, the average duration

will drop to 17,398 seconds. (2) We keep all GPU jobs in Helios
to reflect the realistic characteristics of a GPU datacenter. These

include debugging and testing jobs which are much shorter than

normal training jobs, causing a lower average duration. (3) Our dat-

acenter provides more computing resources. Users usually request

more resources (two more GPUs on average) for training, which

can also significantly accelerate the training process.

Figure 1(a) illustrates the Cumulative Distribution Function (CDF)

of job duration. We observe that Philly jobs statistically took more

time than Helios. This is consistent with our analysis from Table

2. Figure 1(b) shows the percentages of GPU time occupied by jobs

with different statuses. We can see a significant fraction of GPU

time contributed to the jobs which were finally ended up with the

failure or canceled status. Particularly, over one-third of GPU time

was wasted for the failed jobs in Philly and 9.3% in Helios.

0 4 8 12 16 20 24
(a) Hour

70

75

80

85

Av
er

ag
e

Ut
ili

za
tio

n
(%

)

Venus Earth Saturn Uranus

0 4 8 12 16 20 24
(b) Hour

0

100

200

Av
er

ag
e

Su
bm

it
 G

PU
 J

ob
 N

um
be

r

Figure 2: Daily pattern of the cluster usage in Helios. (a)
Hourly average cluster utilization over six months. (b)
Hourly average GPU job submission rates over six months.

3 CHARACTERIZATION OF DL JOBS
In this section, we perform a thorough analysis of our job traces.

Some prior works analyzed the traditional big data traces from

real-world datacenters [19, 59, 61, 68]. In contrast, very few studies

focused on the analysis of DL jobs. [39, 73] performed an empirical

study of the characteristics of their clusters. We give more compre-

hensive analysis from the perspectives of clusters (§3.1), jobs (§3.2)

and users (§3.3).

Our traces cover different characteristics of DL jobs and behav-

iors of AI developers and researchers in SenseTime. For instance,

users can submit long-term production jobs, as well as short-term

exploratory jobs for debugging purposes. Users might early stop

their jobs when they can (not) reach the expected performance. We

perform our assessment statistically, and believe the conclusions

are general for other organizations and clusters as well.

3.1 Cluster Characterization
3.1.1 Daily Trends of Cluster Usage. Figure 2(a) shows the average
cluster utilization for every hour in one day. All the clusters and

users are in the same timezone, and hence exhibit similar patterns

for the daily cluster usage. The utilization of all the clusters ranges

from 65% to 90%. Saturn has the highest utilization, while Venus
and Earth are relatively underutilized. The standard deviation of

hourly utilization in Saturn is 7% and ranging from 10% to 12%

in other clusters. Besides, we observe a 5~8% decrease at night (0

am – 8 am) for all the clusters, which is not very significant. This

is because the workloads in Helios are mainly DL training jobs,

which can take hours or days to complete. It is common that some

jobs are submitted in the daytime but still keep running overnight.

Figure 2(b) shows the average GPU job submission rate for each

hour during the six months. All the clusters have similar patterns

of the job submission in one day: the number drops to the lowest

point at night (sleep), and experiences a slight drop around 12pm

(lunch) and 6pm (dinner). It is also interesting to note that Earth
has a stable and high submission rate (~100 jobs) per hour, but

Characterization and Prediction of Deep Learning Workloads in Large-Scale GPU Datacenters SC ’21, November 14–19, 2021, St. Louis, MO, USA

April May June July August September
0

60000

120000

180000

240000

300000

G
PU

 J
ob

 N
um

be
r

Single-GPU
Multi-GPU

April May June July August September
Month

0

20

40

60

80

100

Av
er

ag
e

Ut
ili

za
tio

n
(%

)

Single-GPU
Multi-GPU

0

20

40

60

80

100

Av
er

ag
e

Ut
ili

za
tio

n
(%

)

Venus Earth Saturn Uranus

Figure 3: Monthly trends of cluster activities in Helios. Top:
number of submitted (single- and multi-GPU) jobs (bars)
and average cluster utilization (dashed lines). Bottom: aver-
age cluster utilization frommulti-GPU jobs (solid lines) and
single-GPU jobs (dashed lines).

has the lowest utilization among the four clusters. This is because

the GPU jobs in Earth are overall shorter than the other clusters.

The cluster utilization depends on both the number of jobs as well

as their running time. Further, the frequency of job submission

is much lower than big data clusters [9, 68]. This implies some

time-consuming scheduling optimization algorithms would apply

for scheduling DL training jobs.

Implication #1: Both the cluster utilization and the job submis-

sion rate exhibit obvious daily patterns. This provides us oppor-

tunities to predict those behaviors in advance and then perform

the optimal resource management and job scheduling.

3.1.2 Monthly Trends of Cluster Usage. We further analyze the

monthly trends of GPU resources and job behaviors. Figure 3 (top)

shows the monthly statistics of GPU job submission
1
(bars) and

average cluster utilization (dashed lines). All the clusters have stable

submissions of multi-GPU jobs each month, while the numbers of

single-GPU jobs fluctuate dramatically. The utilization of Saturn
and Earth remains stable under varied numbers of GPU jobs per

month. Surprisingly, Saturn executed almost twice GPU jobs in July

compared with May or June, whereas the utilization in May (85.21%)

and June (81.92%) is even higher than July (80.87%). Furthermore,

we find the distribution of multi-GPU jobs within the same cluster

is similar each month. The average number of requested GPUs

is very close with a standard deviation of 2.9. Therefore, we can

accurately predict the monthly submissions of multi-GPU jobs from

the previous months’ data. Figure 3 (bottom) presents the cluster

utilization contributed by single-GPU and multi-GPU jobs. It is

evident that single-GPU jobs have little influence on the overall

cluster utilization (less than 6% except for Earth). Conversely, multi-

GPU jobs are dominant to cluster utilization.

1
Our traces end on September 27th. So the reported numbers of September are around

10% lower than the actual one.

vc6YE vcvlY vchbv vcMod vc3sl vcLJZ vcpDC vcTJs vc8Sj vccaA
0

20

40

60

80

100

VC
 U

til
iz

at
io

n
(%

)

vc6YE vcvlY vchbv vcMod vc3sl vcLJZ vcpDC vcTJs vc8Sj vccaA
Virtual Clusters in Earth

0

25

50

75

100

N
or

m
al

iz
ed

 T
im

e
(%

)

Average Duration
Average Queuing Delay

0

4

8

12

16

20

Av
er

ag
e

G
PU

 N
um

be
r

9.9

15.3

1.1

8.4

4.2

12.4

2.6

9.1

5.5

2.6

Figure 4: VC behaviors in Earth. Top: The boxplot of utiliza-
tion distributions for the top 10 largest VCs and the job’s av-
erage number of requested GPUs in each VC (dashed line).
Bottom: Min-Max normalized average job duration (blue
dashed line) and queuing delay (orange dashed line).

Implication #2: For monthly trends, it is infeasible and unnec-

essary to predict the submissions of single-GPU jobs due to their

weak impact on the cluster usage. In contrast, multi-GPU jobs

exhibit more stable monthly patterns, and are critical to cluster

utilization, which we can predict for better scheduling efficiency.

3.1.3 Virtual Cluster Behaviors. In addition to the entire physical

clusters, investigation of VCs is also indispensable. We select a

period when the VC configuration remains stable (May in Earth).
Figure 4 (top) shows the utilization distributions of the 10 largest

VCs (in descending order) averaged per minute. Specifically, there

are 208 GPUs in vc6YE and 32~96 GPUs in other VCs. Each box is

framed by the first and third quartiles, while the black line inside

the box represents the median value. Both whiskers are defined at

1.5 times the InterQuartile Range (IQR). We plot the job’s average

number of requested GPUs for each VC above the corresponding

box. Figure 4 (bottom) shows the average queuing delay and job

duration for each VC.

We find the behaviors of each VC vary significantly, as they

run different types of GPU jobs in terms of resource demands and

duration. First, we observe that the VC utilization is positively

correlated with the average GPU demands. vc6YE and vcLJZ keep

over 90% utilization most of the time as they generally run large

jobs. In contrast, the utilization of vchbv and vccaA is basically

below 65% for hosting small jobs. One exception is vcpDC, which
has high utilization but small average numbers of GPUs. Second,

the job queuing delay is approximately proportional to the average

job duration. Busy VCs (e.g., vcLJZ and vcpDC) typically have much

longer queuing delay. These prove that job queuing and resource

underutilization co-exist in our clusters due to imbalanced VCs.

The key reason is the adoption of static partitioning with VCs.

This simple and mature solution is widely used in production

GPU clusters (e.g., Microsoft [39, 84], Alibaba [73, 78]) for fairness

among multi tenants. However, it also causes long queuing delay

SC ’21, November 14–19, 2021, St. Louis, MO, USA Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang

100 101 102 103 104 105 106

GPU Job Duration (s)

0

20

40

60

80

100

Fr
ac

tio
n

of
 J

ob
s

(%
)

(a)

Venus
Earth
Saturn
Uranus

100 101 102 103 104 105 106

CPU Job Duration (s)

0

20

40

60

80

100

Fr
ac

tio
n

of
 J

ob
s

(%
)

(b)

Venus
Earth
Saturn
Uranus

Figure 5: The CDFs of (a) GPU and (b) CPU job duration.

14 8 16 32 48 64 > 64
GPU Number

0

20

40

60

80

100

Fr
ac

tio
n

of
 J

ob
s

(%
)

(a)

Venus
Earth
Saturn
Uranus

14 8 16 32 48 64 > 64
GPU Number

0

20

40

60

80

100

Fr
ac

tio
n

of
 G

PU
 T

im
e

(%
)

(b)

Venus
Earth
Saturn
Uranus

Figure 6: The CDFs of job sizes (in GPU number) with the
number of (a) jobs and (b) GPU time.

and resource underutilization. Researchers also designed advanced

scheduling algorithms to address these issues with high fairness

[18, 46, 84]. How to implement them into production clusters with

better reliability and robustness will be an important future work.

Implication #3: Different groups submit DL jobs to their VCs

with distinct GPU demands and duration. Hence, the imbalanced

resource allocation across VCs can lead to low resource utilization

and severe job queuing delay [51]. It is critical to consider fairness

when designing schedulers for shared clusters [18, 46, 84].

3.2 Job Characterization
Beyond the cluster statistics, our traces also contain rich informa-

tion at the job level. We draw interesting conclusions from such

information, as discussed below.

3.2.1 Job Execution Time. As shown in Table 2, the number of

GPU jobs is close to the number of CPU jobs in the Helios traces.

However, the average execution time of GPU jobs (6,652s) is 10.6×
longer than CPU jobs (629s). More than 50% of CPU jobs run for

less than 2s. In contrast, the median execution time of GPU jobs is

206s. More specifically, Figure 5 compares the duration distributions

of GPU and CPU jobs in each cluster. The duration of GPU jobs

ranges from seconds to weeks, and is generally over an order of

magnitude longer than CPU jobs. Interestingly, these four clusters

have diverse duration distributions of CPU jobs, while similar dis-

tributions for GPU jobs. In Earth, short-term CPU jobs account for

a larger portion compared with other clusters: nearly 90% of CPU

jobs run for only one second in Earth. Most of them are related to

training progress and node state queries. As for GPU jobs, roughly

three-quarters of jobs last for less than 1000 seconds as they are

mainly for model evaluation and program debugging.

To dive deeper into the characteristics of GPU jobs in each cluster,

we investigate the relationship between the GPU demands, GPU

CPU Job GPU Job
Job Type

0

25

50

75

100

Fr
ac

tio
n(

%
)

90.9

62.4

3.0

22.1

6.1
15.5

(a)

1 2 4 8 16 32 64
GPU Number

0

20

40

60

80

100

Fr
ac

tio
n(

%
)

(b)

Completed Canceled Failed

Figure 7: Distribution of jobs by their final statuses. (a) Com-
parisons ofCPUandGPU jobs for their final statuses. (b) Per-
centages of final job statuses w.r.t. different GPU demands.

time and number of GPU jobs. We show the CDFs of requested

GPU demands with the number of jobs (Figure 6(a)) and GPU time

(Figure 6(b)). We observe there are over 50% single-GPU jobs in

each cluster, and the largest ratio is 90% in Earth. However, they
only occupy 3~12% of the total GPU time. In contrast, although the

proportion of large-size jobs (≥8 GPUs) is smaller than 10%, they

account for around 60% of computing resources.

Implication #4: Despite the number of single-GPU jobs is pre-

dominant, GPU resources are mainly consumed by multi-GPU

jobs. Hence, optimization of multi-GPU jobs is more important

to improve cluster efficiency. This characteristic resembles tradi-

tional HPC workloads [9, 55, 60] and implies some optimization

techniques in HPC can also be applied to GPU clusters.

3.2.2 Job Final Statuses. Figure 7(a) summarizes the distributions

of final statuses for CPU and GPU jobs of these 4 clusters. The

ratio of unsuccessful GPU jobs (37.6%) is significantly higher than

CPU jobs (9.1%). One reason is that some users prefer to terminate

their DL training jobs in advance as the model accuracy already

converges to the satisfactory value. These canceled jobs are still suc-

cessful. Another reason is that users can inspect the training states

and kill the poor-performing jobs earlier. This reflects the feedback-
driven exploration feature of DL training jobs. This early-stopping

feature can be leveraged to optimize the scheduling efficiency. For

instance, [56, 77] help users automatically make the early-stopping

decision through recording training feedback and predicting future

training performance. This can bring a huge benefit to datacenters.

There are also other causes for failed jobs, including timeout,

node failure, incorrect inputs, runtime failure, etc. Microsoft [39, 82]

presented a detailed analysis of the reasons for training job failures,

so we do not conduct similar investigations in this paper.

Implication #5: Since many DL training jobs can reach the con-

vergence earlier than expected, the scheduler can automatically

detect this condition and stop the jobs for resource efficiency

[56, 77]. Users can use different metrics (e.g., loss, accuracy) and

authorize the scheduler to monitor and manage their jobs.

In Figure 7(b), we quantify the ratios of different job final statuses

in terms of GPU demands. We only consider the GPU numbers of

2
𝑘 (𝑘 ∈ N) as they are mostly requested in Helios. We observe that

the ratio of job completion keeps decreasing as the number of GPUs

increases, with an exception of 2-GPU jobs. For large jobs with 64 or

Characterization and Prediction of Deep Learning Workloads in Large-Scale GPU Datacenters SC ’21, November 14–19, 2021, St. Louis, MO, USA

0 25 50 75 100
Fraction of Users (%)

0

25

50

75

100

Fr
ac

tio
n

of
 T

ot
al

G
PU

 T
im

e
(%

)

(a)

Venus
Earth
Saturn
Uranus

0 25 50 75 100
Fraction of Users (%)

0

25

50

75

100

Fr
ac

tio
n

of
 T

ot
al

CP
U

Ti
m

e
(%

)

(b)

Venus
Earth
Saturn
Uranus

Figure 8: The CDFs of users that consume the cluster re-
sources in terms of (a) GPU Time (b) CPU Time.

0 25 50 75 100
Fraction of Users (%)

0

25

50

75

100

Fr
ac

tio
n

of
 T

ot
al

Q
ue

ui
ng

 T
im

e
(%

)

(a)

Venus
Earth
Saturn
Uranus

0 25 50 75 100
GPU Job Completion Rate (%)

0

50

100

Us
er

 N
um

be
r

(b)

Figure 9: (a) The CDFs of users w.r.t. GPU job queuing delay.
(b) The distribution of user GPU job completion ratios.

more GPUs, only fewer than a quarter of jobs complete successfully

while the canceled ratio even reaches roughly 70%. This is because

these jobs typically run for very long time, and users have higher

chances to early stop them to save time and resources.

Additionally, we find most failed jobs are terminated within a

short time, which matches the conclusions in prior works [39, 82].

The majority of failures are incurred by user errors, such as script

configuration, syntax/semantic errors in the program. However,

plenty of short-term debugging jobs suffer from severe queuing

delays. Users usually fail to get the code debugging feedback timely,

which considerably affects their experience.

Implication #6: A lot of failed jobs are for debugging purposes,

and last for a very short time. However, they are mixed with the

long-term production jobs in the queue and possibly suffer from

much longer waiting time than execution. A possible solution is to

allocate a special VC for debugging jobs and enforce a short-term

limit (e.g., 2 minutes). This can help users obtain error messages

timely and filter most failed jobs for normal clusters.

3.3 User Characterization
We analyze the traces from the users’ perspective, to discover meth-

ods for user experience enhancement. This has never been consid-

ered in prior works about DL job analysis. Each cluster has 200~400

users. Some users can submit jobs to multiple clusters concurrently.

Similar to our analysis of job trends, we first investigate the

consumption of CPU and GPU resources at the user level, as shown

in Figure 8. We find the trends are similar across all the clusters.

Compared with GPU time, the CDF curves of CPU time are much

steeper, indicating CPU jobs are more concentrated within a small

portion of users. This is because only 25% of users on average need

to conduct CPU tasks (e.g., video frames extraction), and the top 5%

of users occupy over 90% CPU time. In contrast, almost every user

has GPU training jobs, and the top 5% of users consume 45~60%

GPU time.

Next, we study the distributions of GPU job queuing delay among

users, as shown in Figure 9(a). We observe that most users do not

suffer from severe job queuing, whereas a few users have jobs

blocked for a long time. In Uranus, the top 1% of users (only 3)

bear over 70% queuing time, even they are not among the top 10

resource-consumption users. We name them “marquee users” [76],

and their experiences need to be ameliorated.

Figure 9(b) shows the distributions of users for different GPU job

completion rates. It is obvious that the users’ GPU job completion

rates are generally low, which proves that the high fraction of

unsuccessful GPU jobs (shown in Figure 7) reflects the users’ overall

behaviors instead of some individual ones.

Implication #7: To alleviate the problem of unfair cluster queu-

ing, it is recommended that the scheduler should consider our

user-level analysis to perform the corresponding optimization.

For instance, the scheduler can dynamically adjust temporary

priorities to users, especially to the marquee ones, based on their

current job queuing statuses. The VC configuration can also be

regulated appropriately according to users’ behaviors.

4 A PREDICTION-BASED FRAMEWORK
From §3, we find the feasibility of predicting clusters’ behaviors

(e.g., job duration, node states) from the history. Inspired by this

observation, we design a novel prediction-based GPU resource

management framework, which leverages the historical data to

improve the resource usage efficiency and workload performance.

4.1 Framework Overview
Figure 10 illustrates the overview of our framework. It is designed

as a centralized manager built atop each GPU cluster. It adopts

the “plug-and-play” fashion, where different resource management

services can be integrated into this framework. Each service is in-

dependent and targets a different perspective of optimization. They

share common design philosophy, and follow the same workflow.

The cluster operators can select services based on their demands.

Update

Data

Fetch

Model Update EnginePhysical Cluster

Compute Nodes

…

Lustre
&

Ceph

Storage

Job Logs
Node States

···

Data Collection Prediction Models

QSSF

Service A

…

Users

Jobs

Resource Orchestrator

Updated

Model

Resource

Manage

A B

…

1

2

3CES

Service B

Extension

Service C

Extension

Service X

Figure 10: Overview of our prediction-based framework.

The framework consists of two components: Model Update En-
gine and Resource Orchestrator. For each service, a machine learn-

ing model is trained to predict the job behaviors or cluster states.

During the operation, the Resource Orchestrator uses the model to

SC ’21, November 14–19, 2021, St. Louis, MO, USA Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang

predict the upcoming events and determines the optimal resource
management operation (1), which will be executed in the cluster.

Meanwhile, the Model Update Engine fetches the run-time data (2)

regularly (e.g., every minute) or triggered by events, and fine-tunes

the model periodically to adapt to the changes in the cluster (3).

Our framework has several benefits. (1) Extensibility: we provide
an abstract pipeline for resource management. As case studies, we

design two novel services: Quasi-Shortest-Service-First Scheduling
to minimize the cluster-wide average JCT (§4.2), and Cluster Energy
Saving to improve the cluster energy efficiency (§4.3). Other services

based on machine learning prediction can also be integrated into

our framework, e.g., burstiness-aware resource manager [80, 83],

network-aware job scheduler [12, 38], etc. (2) High usability: our
framework can be deployed into arbitrary GPU clusters. The ser-

vices work as plugins atop the current management systems (e.g.

Slurm, YARN, Kube-scheduler) with minimal or no modifications

to them. Users do not need to provide extra information or spec-

ifications. (3) Low overhead: the prediction and operation latency

for each service typically takes milliseconds, which is negligible

for DL workloads.

4.2 Quasi-Shortest-Service-First Scheduling
4.2.1 Motivation. All GPU clusters in Helios are managed by

Slurm. Jobs are scheduled using the vanilla First-In-First-Out (FIFO)

algorithm, similar to YARN ’s Capacity Scheduler [70]. Due to such

runtime-unaware scheduling style [69], users complain that even

short-term jobs can suffer from long queuing delays.

Both Shortest-Job-First (SJF) and Shortest-Remaining-Time-First

(SRTF) algorithms were proposed to reduce the average JCT [29–31,

63] with and without preemption respectively. However, they are

too ideal and thus impractical in GPU clusters, due to the following

two reasons: (1) some jobs in GPU clusters do not have iterative

characteristics, and cannot be preempted and then restored from the

checkpoints. Hence, the preemption-enabled scheduling algorithms

(SRTF) are not applicable for these jobs. (2) These algorithms rely on

the information of job duration or remaining execution time, which

is uncertain and could be affected by many unexpected factors

(e.g., termination in advance, training early-stopping [57], error

and node crash, etc.). To address this issue, prior works try to

obtain the job runtime information from the users [16, 33, 70], job

profiling [13, 27, 37, 71, 72] or leveraging the job’s periodic features

[22, 24, 38, 41]. These approaches can either affect the usability or

operation cost, or lack of generality for different types of workloads.

Driven by these limitations, we design a new Quasi-Shortest-

Service-First (QSSF) scheduling service. This scheduler adopts the

non-preemption mechanism, which can be applied to different

types of jobs in our datacenter. Owing to the constraint of the

gang scheduling for DL training jobs, large-size short-term jobs

can occupy many GPUs, which can block multiple small-size jobs

using the SJF scheduler [31]. We choose to rank jobs with GPU time

instead of duration. Through the trace analysis, we find there exist

strong correlations between the job duration and some attributes,

such as job name, user, GPU demands, submission time, etc. Hence,

our scheduler leverages these attributes to predict the jobs’ priority

orders (i.e., expected GPU time) for scheduling. Similar ideas were

also applied for scheduling big data workloads [54, 69]. We consider

Algorithm 1 Quasi-Shortest-Service-First Scheduler

Input: New job: J, VCQueue: Q, Historical job trace: J
1: procedure QSSF Schedule(J, Q, J)
2: J .𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = Priority(J, J) ▷Assign priorty to the new job
3: Enqueue J to Q

4: SortJobPriority(Q) ▷Sort by job priority
5: for all Job ∈ Q do
6: if Consolidate(Job) is True then
7: ConsolidateAllocate(Job) ▷Job placement
8: Dequeue Job from Q
9: else
10: break
11:

12: function Priority(J, J)
13: if UserMatch(J .𝑢𝑠𝑒𝑟, J.𝑢𝑠𝑒𝑟𝑠) is ∅ then
14: P𝑅 = Distribution(J.𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠) ▷New user
15: else if SimilarName(J .𝑛𝑎𝑚𝑒 , J.𝑢𝑠𝑒𝑟 .𝑛𝑎𝑚𝑒𝑠) is ∅ then
16: P𝑅 = Distribution(J.𝑢𝑠𝑒𝑟 .𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠) ▷New job name
17: else
18: P𝑅 = RollingEstimator(J, J)
19: P𝑀 = MLEstimator(J)
20: P = N(𝜆P𝑅 + (1 − 𝜆) P𝑀) ▷N: GPU number of J, 𝜆: Merging

coefficient
21: return P

more attributes with amachine learningmodel ensemble to enhance

the scheduling performance for DL jobs.

4.2.2 Service Design. Our QSSF scheduler builds a machine learn-

ing model to predict the expected GPU time of incoming jobs. When

a user submits a DL job to the cluster, the scheduler immediately

retrieves the relevant attributes (e.g., GPU & CPU demands, job

name, user id, target VC, etc) and infers the job’s expected GPU

time from the model. Then the scheduler selects and allocates jobs

based on the predicted GPU time and cluster resource states. After

the job termination, the job’s final information will be collected by

the Model Update Engine for fine-tuning the prediction model.

We train a Gradient Boosting Decision Tree (GBDT) [42] model

to capture the overall trend of the relevant jobs. Specifically, we

extract all features and actual duration from the traces to construct

a training and validation set. We encode all the category features

(e.g., user name, VC name, job name). For the extremely sparse

and high-dimensional features of job names, we utilize the Lev-

enshtein distance [53] to cluster the names and bucketize similar

ones, which convert them into relatively dense numerical values.

For the time-related features (e.g., job submission time), we parse

them into several time attributes, such as month, day of the week,

hour, minute. Finally, we train a GBDT model that can map these

job attributes to the corresponding duration.

Algorithm 1 shows the pseudo-code of our QSSF algorithm. The

core function is Priority (line 12), which returns a priority value

(P) for a given job (J). P is calculated as the weighted sum of a

rolling estimate P𝑅 and machine learning estimate P𝑀 . The rolling

estimate P𝑅 is computed directly from the historical jobs with

similar attributes. There are three cases for calculating P𝑅 : (1) if the
job user cannot be found in the traces (new user), then P𝑅 is the

average duration of all the jobs with the same GPU demands in the

traces (line 14). (2) If the traces have the records of this user, then we

Characterization and Prediction of Deep Learning Workloads in Large-Scale GPU Datacenters SC ’21, November 14–19, 2021, St. Louis, MO, USA

100 102 104 106

JCT (s)

0

20

40

60

80

100

Fr
ac

tio
n

of
 J

ob
s

(%
)

(a) Venus

100 102 104 106

JCT (s)

0

20

40

60

80

100

Fr
ac

tio
n

of
 J

ob
s

(%
)

(b) Earth

100 102 104 106

JCT (s)

0

20

40

60

80

100

Fr
ac

tio
n

of
 J

ob
s

(%
)

(c) Saturn

100 102 104 106

JCT (s)

0

20

40

60

80

100

Fr
ac

tio
n

of
 J

ob
s

(%
)

(d) Uranus

FIFO SJF SRTF QSSF

Figure 11: Comparisons of JCT distributions using different scheduling algorithms, based on the September job traces across
4 clusters in Helios. Note that SJF and SRTF are optimal baselines (with perfect job duration information).

vczIT vcWk1 vcBLw vcofO vcOIr vcQ4H vcUV3 vcqdr vcSE7 vc19r all
VCs in Saturn

0

2

4

6

8

Av
er

ag
e

Q
ue

ui
ng

 T
im

e
(s

)

×104 FIFO SJF SRTF QSSF

Figure 12: The average job queuing delay of the top 10 VCs
in Saturn (September) with different scheduling algorithms.
The column all represents the whole cluster.

leverage the Levenshtein distance to find historical jobs from this

user, which have similar names or formats as the incoming one. If no

such historical jobs are found, then P𝑅 is the average duration of all

this user’s jobs with the same GPU demands in the traces (line 16).

(3) Otherwise, we compute P𝑅 via exponentially weighted decay

of duration of historical jobs with matched names (line 18). The

machine learning estimate P𝑀 is computed by the GBDT model

(line 19), which considers the overall trend of the relevant jobs.

Finally, we combine the two estimates P𝑅 and P𝑀 , and multiply

the requested GPU number (N) to get the job’s expected GPU time

P as the priority value (line 20), which can reflect both spatial and

temporal aspects of the job [31].

We select a job from the VC queue with the highest priority

(lowest predicted GPU time) for scheduling. For job placement,

unless the topology is specified by the user, the ConsolidateAllocate
policy is adopted to allocate each job on as few nodes as possible

to reduce the communication overhead. For instance, a 16-GPU

job needs to wait for two compute nodes with 8 idle GPUs. Other

placement solutions will violate the consolidation principle.

4.2.3 Evaluation. We develop a trace-driven simulator to evalu-

ate our QSSF algorithm. It emulates a datacenter with the same

configuration as Helios in Table 1, which operates with the real-

world job workflow: job arrival – queuing – running – comple-

tion/canceled/failed. Since the GPU resources are the bottleneck in

our clusters, we mainly consider the GPU jobs in our simulation.

We train the GBDT model using the jobs from April to August in

the traces, and evaluate the model with the jobs in September.

ee9e8c 0e4a51 6214e9 11cb48 2869ce 103959 e13805 7f04ca b436b2 6c71a0 all
VCs in Philly

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

Q
ue

ui
ng

 T
im

e
(s

)

×105 FIFO SJF SRTF QSSF

Figure 13: The average job queuing delay of the top 10 VCs
in Philly (October and November) with different scheduling
algorithms. The column all represents the whole cluster.

We consider three baseline algorithms for comparisons. (1) FIFO:
the current scheduling policy in our clusters, which is simple but

has poor performance. (2) SJF : the optimal policy to minimize the

average JCT without preemption. (3) SRTF : the optimal preemption-

enabled version of SJF, where we assume all the jobs can be pre-

empted with negligible overhead. Both the SJF and SRTF algorithms

are not practical, since they need perfect job duration information

[31, 63], which cannot be obtained in reality. They serve as the

upper bound of the scheduling performance. We assume the sched-

uler knows the exact job duration given in the trace. Also, we do

not consider the backfill mechanism, as we want to explore how

much benefit can be obtained solely from prediction. Integration of

backfill with our QSSF service will be considered as future work.

Figure 11 shows CDF curves of JCT in each cluster with different

scheduling algorithms. We observe that our QSSF algorithm can

significantly outperform the naive FIFO policy, and perform compa-

rably with SRTF and SJF, without making unrealistic assumptions.

The advantage of QSSF over FIFO is relatively smaller in Uranus,
as the job queuing delay in this cluster is not as severe as the other

three clusters: the queuing period takes 70~90% of the total job

completion time in other clusters while 42% in Uranus (Table 3).

From Table 3, QSSF reduces 37~82% of queued jobs, which is

even better than SJF. Interestingly, even though QSSF prioritizes

short-term jobs to alleviate the head-blocking problem, the queuing

delays of large jobs are also improved because of fewer queuing jobs.

Table 4 shows the improvement of QSSF over SJF in different groups

of jobs. Short-term jobs achieve at least 9.2× improvement while

long-term jobs can also obtain 2.0~4.8× improvement in Helios.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang

Table 3: Performance comparison of different schedulers.
Venus Earth Saturn Uranus Philly

Average

JCT (s)

FIFO 64,702 19,754 55,984 19,758 86,072

SJF 21,095 6,892 8,501 13,226 34,272

QSSF 18,349 6,732 8,581 13,123 37,324

Average

Queuing Time (s)

FIFO 52,933 13,699 50,202 8,394 56,531

SJF 9,325 837 2,719 1,861 4,731

QSSF 6,580 677 2,798 1,759 7,783

of

Queuing Jobs

FIFO 15,336 30,030 65,991 16,917 30,282

SJF 8,353 8,848 21,808 11,320 21,437

QSSF 3,713 5,462 15,311 10,581 22,026

Table 4: The ratio of queuing delay between FIFO and QSSF
in different job groups. A higher ratio indicates shorter de-
lay and better efficiency in QSSF.

Venus Earth Saturn Uranus Philly

short-term (<15 mins) 11.44 33.51 22.88 9.24 26.95

middle-term (15 mins~6 hours) 4.13 13.39 7.39 2.49 5.54

long-term (>6 hours) 3.22 4.77 3.56 2.00 1.70

This justifies that QSSF will not sacrifice the interest of long-term

jobs and all kinds of jobs can benefit from our service.

To evaluate the performance differences caused by the scheduler

in each VC, we depict the average job queuing delay of VCs in

Saturn, as shown in Figure 12. We select the top-10 VCs with the

highest average queuing time, while the other VCs have little delay.

We observe the average queuing time of QSSF is almost identical

to SJF, and remain stable in each VC. Furthermore, QSSF even

outperforms SRTF in vcWk1. This confirms the importance of GPU

demands to enhance the scheduling efficiency, since large-size short-

term jobs may block many small-size jobs. To summarize, compared

with FIFO, QSSF achieves 1.5~6.5× improvement in average JCT,

and 4.8~20.2× improvement in average queuing delay among 4

clusters in Helios.
In addition, we also evaluate the applicability of our QSSF service

on the Philly trace. Since Microsoft did not release sufficient trace

information (e.g., job names and VC configurations) which is neces-

sary for our service, we make two reasonable assumptions. (1). The

VC configurations are static during our evaluation period (from 1st

October to 30th November, 2017) and the size of each VC is set cor-

responding to its workloads. (2). The priority values are generated

randomly with a similar error distribution as Helios estimation.

As shown in Table 3, QSSF obtains comparable performance with

the optimal SJF in Philly, even without precise estimates. It achieves

2.3× improvement in average JCT, 7.3× improvement in average

queuing delay, and reduces 27% of queued jobs. Figure 13 presents

the VC-level analysis of QSSF performance.We observe QSSF brings

large improvement in each VC with regard to the average queuing

time.

4.3 Cluster Energy Saving
4.3.1 Motivation. Electricity dominates the operation cost of mod-

ern GPU datacenters, even surpassing the manufacturing cost dur-

ing the datacenters’ lifetime [47]. How to reduce the energy con-

sumption in GPU clusters becomes an important research direction.

In reality, tremendous energy is wasted on idle compute nodes.

Algorithm 2 Cluster Energy Saving Node Control

Input: Nodes #: Current Active CA, Current Running CR , Request R, His-
tory Series H, Prediction Series P

1: procedure JobArrivalCheck(CA, R)
2: if CA < R then ▷Lack nodes
3: NodesWakeUp(R − CA + 𝜎) ▷𝜎 : Buffer nodes
4:

5: procedure PeriodicCheck(H, CA, CR , P)
6: T𝐻 = RecentNodesTrend(H)

7: T𝑃 = FutureNodesTrend(P)
8: if T𝐻 ≥ 𝜉𝐻 and T𝑃 ≥ 𝜉𝑃 then ▷𝜉𝐻 , 𝜉𝑃 : Thresholds
9: CA ← DynamicResourceSleep(CR + 𝜎)

Then the critical goal is to reduce energy consumption from those

idle nodes while satisfying users’ demands. There are generally

two techniques to conserve energy in datacenters. (1) Dynamic

Voltage and Frequency Scaling (DVFS) adjusts the CPU & GPU

voltage and frequency to save power. (2) Dynamic Resource Sleep

(DRS) puts idle servers into deep sleep states (or simply turning

them off) [47, 50]. Slurm also provides an integrated power saving

mechanism [79] to switch the nodes between power saving and

normal operation modes based on their workloads.

We introduce a novel Cluster Energy Saving (CES) service to

achieve energy conservation in GPU datacenters. Existing DRS-

based technique [47] simply turns off and on the nodes based on

recent and current workloads. However, frequent server boot-up
can introduce extra energy overhead and delay. In order to reduce

the unnecessary mode switch operations, we build a prediction

model to estimate the future utilization trend in our clusters based

on the historical node state logs. With the prediction, we can select

and power off the optimal number of servers. This saves energy

consumption while maintaining the cluster usability. As described

in §3.1, the average utilization rate of our clusters ranges from 65%

to 90%, and partial VCs are underutilized all the time. Hence, this

strategy can bring huge financial gains for the datacenter.

4.3.2 Service Design. The core of our service is the prediction

model, which performs a time-series forecasting task. The biggest

challenge of building this model is the lack of accurate information

about the future behaviors of the cluster. Therefore, we extract

time-related data such as trend, seasonality, and any deterministic

event as the features for prediction. Specifically, we encode repeti-

tive patterns (e.g., hour, day of the week, date) of running nodes

to explore the periodic variations. Node trends are calculated as

the average values and standard deviations of active nodes under

different rolling window sizes. Moreover, binary holiday indicators

and various time scale lags are also crucial for prediction. We use

these features to build a model which can predict the number of

running nodes in the future. We try different machine learning

algorithms, and find the GBDT [42] model performs the best over

other classical or deep learning models, e.g., ARIMA [32], Prophet

[67], and LSTM [11]. So we choose GBDT in our CES service, which

can achieve around 3.6% error rate (measured in Symmetric Mean

Absolute Percentage Error (SMAPE) [35]) in the Earth cluster. This
can give reliable and accurate advice for powering off nodes.

With the prediction results, we can select the idle nodes and

apply DRS to them. Algorithm 2 illustrates the procedure, where

Characterization and Prediction of Deep Learning Workloads in Large-Scale GPU Datacenters SC ’21, November 14–19, 2021, St. Louis, MO, USA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Dates in September

80

100

120

140

G
PU

 N
od

e
N

um
be

r

Running Prediction Active Total

Figure 14: Numbers of compute nodes at different states in
Earth from 1st September to 21st September (3 weeks).

two steps are conducted to guarantee compute resources and con-

serve energy. (1) When a new job is submitted to the cluster, the

service performs JobArrivalCheck (line 1) to inspect whether

the requested resources (R) surpass the currently available ones

(CA) in the cluster. If so, the service needs to wake up some nodes

immediately via the Intelligent Platform Management Interface

(IPMI). The quantity of nodes is determined by the resource gap

(R − CA) with an additional number 𝜎 to buffer unexpected future

jobs. (2) Our service also calls PeriodicCheck regularly (e.g., ev-

ery 10 minutes) to check if extra nodes need to be powered off.

The decision is made from both the historical and predicted future

trends, to circumvent the incorrect DRS operations caused by the

prediction error. Specifically, we call the function RecentNodesTrend
to calculate the reduced number of active nodes during a fixed past

period (e.g., one hour) from the historical data. We also call Fu-
tureNodesTrend to calculate the expected reduced number of active

nodes in a fixed future period (typically 3 hours) based on the GBDT

model prediction. If these two trends are larger than the thresholds

(𝜉𝐻 , 𝜉𝑃), DynamicResourceSleep is called to reduce the active nodes

(CA) to the current running number (CR) with a buffer 𝜎 .

In this paper, we exploit the DRS technique on the selected nodes.

Alternatively, we can also utilize CPUfreq governor and nvidia-smi
[6] to adjust the frequency and voltage of CPUs & NVIDIA GPUs.

According to [66], DVFS can not only improve the DL training per-

formance by up to 33% but also save up to 23% energy consumption.

Evaluations of these techniques will be our future work.

4.3.3 Evaluation. We perform similar simulations as §4.2.3 based

on the real-world traces from Helios. We select a period of 3 weeks

(from 1st September to 21st September) in each cluster for evalua-

tion, and the previous records are all used for training the prediction

model. Figure 14 shows the GPU node behaviors in the Earth clus-

ter. Two dashed lines denote the numbers of actual active nodes

(blue) and our predictions (orange) respectively. We observe that

our prediction can precisely reflect the actual trend with small es-

timate errors. The red solid line depicts the total number of GPU

nodes. It is obvious to see a huge gap between the red and blue lines,

representing a large number of energy-wasting idle nodes. With

our CES service, a lot of idle nodes are powered off. The green solid

line denotes the number of remaining active nodes. Qualitatively,

we observe these nodes are just enough to meet users’ demands

while significantly reducing the energy waste.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Dates in December

100

200

300

400

G
PU

 N
od

e
N

um
be

r

Running Prediction Active Total

Figure 15: Numbers of compute nodes at different states in
Philly from 1st December to 14th December (2 weeks).

Table 5: Performance ofCES service in each cluster of Helios
and Philly.

Venus Earth Saturn Uranus Philly

Average # of DRS nodes 5.0 20.5 20.0 34.0 100.1

Average times of daily wake up 1.1 1.3 2.0 2.6 0.5

Average # of woken up nodes per time 6.7 6.7 7.1 9.7 27.1

Node utilization (Original) 92.7% 82.1% 90.2% 83.8% 69.0%

Node utilization (CES) 96.2% 95.1% 97.6% 96.4% 90.4%

Table 5 presents a quantitative analysis for each cluster. Our

service can remarkably improve the node utilization, especially

in Earth (13.0%) and Uranus (12.6%), as these clusters are rela-

tively underutilized. Besides, our service only calls the function

NodesWakeUp 1.1~2.6 times a day in each cluster. In contrast, the

vanilla DRS without considering nodes’ future trends can incur an

average of 34.1 NodesWakeUp operations a day, which causes much

more turn-on energy overhead and job queue delay. Specifically,

assuming each node takes 5 minutes to reboot, our service only

affects 251 out of 198k jobs during 21 days. Nevertheless, vanilla

DRS leads to nearly 6k jobs affected in the same traces.

Furthermore, we make a rough estimation about the reduction

of energy consumption with CES using the data from Table 5. The

power consumption of one single idle DGX-1 server is around 800

watts (obtained fromNVIDIA BMC [1] by adding the input values of

all PSUs). In addition, the cooling infrastructure typically consumes

twice the energy as the servers in datacenter [23]. Hence, we can

save over 1.65 million kilowatt hours of electricity annually across

these 4 clusters. This can significantly reduce the operation cost.

We also evaluate our CSE service on the Philly trace. Microsoft

provides per-minute statistics about GPU utilization on every node

from the Ganglia monitoring system [39], from which we obtain a

time sequence about the numbers of total and running GPU nodes.

We select a period of 2 weeks (from 1st December to 14th December)

for evaluation, and the previous data are all used for training the

GBDT model. As shown in Figure 15, it is obvious that the change

frequency of running nodes in Philly is lower than Earth and its

cluster scale is over twice than Earth. Hence, the CES service only
needs to take 0.5 times of nodes wake up action on average (Table

5), which has a negligible impact on the average JCT. Besides, more

than 100 idle nodes can be powered off on average and the cluster

node utilization rate is increased from 69% to 90% (Table 5). This

shows the CES service has strong applicability and generality for

different clusters and workloads.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang

5 RELATEDWORK
Cluster characterization. A number of prior works conducted

trace analysis for traditional CPU workloads, e.g., HPC systems [9,

10, 40, 55, 60, 62, 76], private clouds [20, 59, 61, 68]. Amvrosiadis et al.

[9] presented an analysis of the private andHPC cluster traces about

job characteristics, workload heterogeneity, and cluster utilization.

They disclosed the correlations among job duration, behaviors,

logical names and user behaviors. We further demonstrate the

predictability of cluster resources and workloads information in

GPU datacenters.

On the other hand, fewer studies focused on the analysis of

characteristics of DL workloads in large-scale clusters. Jeon et al.

[39] studied the DL job trace from the Microsoft cluster to identify

the impact of the DL training job locality on the GPU utilization as

well as job failure reasons. Wang et al. [73] characterized various

resource requirements and identified the performance bottlenecks

of DL training jobs in Alibaba datacenter.

In comparison, our work provides a more comprehensive analy-

sis about clusters, jobs, and user behaviors. Besides, wec provide

more diversity to reflect the latest features of DL algorithms and

technologies. These can deepen our understanding about the char-

acteristics of DL clusters and jobs. We uncover seven interesting

observations to inspire the new designs of efficient GPU schedulers.

Prediction-based scheduling. Prior knowledge of jobs can sig-

nificantly facilitate the management of cluster resources. Modern

cluster systems [16, 33, 70] expect users to provide estimates about

their job duration, which may not be accurate as the job completion

time is unexpected. Several methods were proposed to obtain more

precise job information automatically for efficient scheduling. For

instance, some schedulers predict the duration of new jobs based

on the recurrent jobs [22, 24, 38, 41], or job structure knowledge

[13, 27, 37, 71, 72]. These require the jobs to have explicit periodic

patterns or known structures. For more general cases, some systems

[20, 54, 69] predict the estimate from the history of relevant jobs.

For DL training job schedulers, Gandiva [77] leverages intra-job

predictability to split GPU-time efficiently across multiple jobs to

achieve lower latency. Optimus [56] adopts online fitting to predict

model convergence during training. Tiresias [31] calculates the Git-

tins index as the job priority according to the duration distribution

of previous jobs. AlloX [43] designs an estimator and profiles jobs

in an online manner to determine the job duration. Different from

these schedulers only for DL training, our QSSF scheduling service

supports all types of DL jobs in the model developing pipeline. This

better fits the industry requirements for production GPU clusters.

Energy efficiency forGPUclusters. Prior studies [36, 50] demon-

strated that DRS does not affect the performance and efficiency of

the cluster, which is consistent with our simulation results. Further-

more, a series of works [8, 14, 28, 45, 48, 66, 74] indicated that GPU

DVFS has huge benefits to save the energy consumption in GPU

clusters. Some job scheduling algorithms [17, 47, 49] were then pro-

posed based on these techniques to achieve energy efficiency in the

clusters. However, they do not consider the impact of cluster future

workloads, which can lead to more unnecessary server boot-up

delays and extra energy overhead. In our CES service, we further

enhance the benefits of the DRS by predicting the cluster usage in

advance, which can get better efficiency.

6 DISCUSSIONS
6.1 Extension to Small-scale Clusters.
In this paper, we mainly conduct the analysis and characterization

of large-scale GPU clusters. Our framework can also be applied to

small clusters, for two reasons. (1) In a small cluster, the number of

active jobs is also scaled down with the available resources. This

does not affect the inherent behaviors and characteristics of jobs

and users. (2)We focus on the analysis of VCs (with tens to hundreds

of GPUs), which are independent without sharing. They can be

regarded as small clusters.

Specifically for our prediction framework, the prediction accu-

racy does not depend on the cluster size. It is mainly determined

by two factors: (1) the size of the training set: more historical data

can bring more comprehensive and generalized information, which

leads to higher model accuracy; (2) the characteristics of the cluster.

QSSF relies on the diverse attributes and distributions of jobs, while

CES relies on the seasonal utilization trends of the cluster. So we

believe our system can be deployed to small clusters similarly.

6.2 Future Works
We identify the following several directions as future work. (1) We

aim to design and integrate more services into our framework to

make it more comprehensive. (2) Some attributes in our services

may not be available in other clusters. We aim to design new quali-

fied models with limited job information for our services. (3) Our

services mainly rely on historical job data, and coarse-grained clus-

ter information. We aim to collect and leverage more fine-grained

resource information (e.g., GPU memory usage and computation

unit utilization, CPU utilization) as features to build more accurate

models for better cluster management performance. (4) We are

planning to implement our prediction framework in our production

clusters, and evaluate its effectiveness at scale.

7 CONCLUSION
In this paper, we perform a large-scale analysis of the real-world

DL job traces from four clusters in our datacenter. We present the

characterizations of clusters, jobs and users, and identify seven

implications, to guide us to design more efficient GPU cluster sys-

tems. Justified by the implication that the behaviors of jobs and

clusters are predictable, we introduce a general-purpose GPU clus-

ter management framework, which predicts the future behaviors of

jobs and clusters to improve the resource utilization and job perfor-

mance. As two case studies, we design a QSSF service to improve

the average JCT by up to 6.5×, and a CES service to conserve annual
power consumption of over 1.65 million kilowatt hours.

Helios traces are publicly available at https://github.com/
S-Lab-System-Group/HeliosData. We expect they can benefit

researchers in the design of GPU datacenter systems.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments.

This study is supported under the RIE2020 Industry Alignment Fund

– Industry Collaboration Projects (IAF-ICP) Funding Initiative, as

well as cash and in-kind contributions from the industry partner(s).

https://github.com/S-Lab-System-Group/HeliosData
https://github.com/S-Lab-System-Group/HeliosData

Characterization and Prediction of Deep Learning Workloads in Large-Scale GPU Datacenters SC ’21, November 14–19, 2021, St. Louis, MO, USA

REFERENCES
[1] 2021. DGX-1 BMC. https://docs.nvidia.com/dgx/dgx1-user-guide.

[2] 2021. Lustre. https://www.lustre.org/.

[3] 2021. Memcached. https://memcached.org/.

[4] 2021. NCCL. https://developer.nvidia.com/nccl.

[5] 2021. NVIDIA Multi-Instance GPU. https://www.nvidia.com/en-us/technologies/

multi-instance-gpu/.

[6] 2021. NVIDIA-smi. https://developer.nvidia.com/nvidia-system-management-

interface.

[7] 2021. NVLink. https://www.nvidia.com/en-us/data-center/nvlink/.

[8] Yuki Abe, Hiroshi Sasaki, Shinpei Kato, Koji Inoue, Masato Edahiro, and Martin

Peres. 2014. Power and Performance Characterization and Modeling of GPU-

Accelerated Systems. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium (IPDPS ’14).

[9] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gibson, Elis-

abeth Baseman, and Nathan DeBardeleben. 2018. On the diversity of cluster

workloads and its impact on research results. In 2018 USENIX Annual Technical
Conference (USENIX ATC ’18).

[10] Norbert Attig, Paul Gibbon, and Thomas Lippert. 2011. Trends in supercomputing:

The European path to exascale. Computer Physics Communications 182 (2011),
2041–2046.

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations (ICLR ’15).

[12] Marcel Blöcher, Lin Wang, Patrick Eugster, and Max Schmidt. 2021. Switches

for HIRE: Resource Scheduling for Data Center in-Network Computing. In Pro-
ceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’21).

[13] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,

Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and Coordinated Scheduling

for Cloud-Scale Computing. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’14).

[14] Robert A. Bridges, Neena Imam, and Tiffany M. Mintz. 2016. Understanding

GPU Power: A Survey of Profiling, Modeling, and Simulation Methods. Comput.
Surveys 49 (2016).

[15] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris

Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack

Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and

Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems (NeurIPS ’20).

[16] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.

2016. Borg, Omega, and Kubernetes: Lessons Learned from Three Container-

Management Systems over a Decade. Queue 14 (2016), 70–93.
[17] Vincent Chau, Xiaowen Chu, Hai Liu, and Yiu-Wing Leung. 2017. Energy Efficient

Job Scheduling with DVFS for CPU-GPU Heterogeneous Systems. In Proceedings
of the Eighth International Conference on Future Energy Systems (e-Energy ’17).

[18] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwatra,

and Srinidhi Viswanatha. 2020. Balancing Efficiency and Fairness in Heteroge-

neous GPU Clusters for Deep Learning. In Proceedings of the Fifteenth European
Conference on Computer Systems (EuroSys ’20).

[19] Yanpei Chen, Sara Alspaugh, and Randy Katz. 2012. Interactive Analytical Pro-

cessing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads.

Proceedings of the VLDB Endowment 5 (2012), 1802–1813.
[20] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,

and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting

Workloads for Improved Resource Management in Large Cloud Platforms. In

Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17).
[21] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks

for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (RecSys ’16).

[22] Carlo Curino, Djellel E. Difallah, Chris Douglas, Subru Krishnan, Raghu Ramakr-

ishnan, and Sriram Rao. 2014. Reservation-Based Scheduling: If You’re Late Don’t

Blame Us!. In Proceedings of the ACM Symposium on Cloud Computing (SoCC
’14).

[23] Miyuru Dayarathna, Yonggang Wen, and Rui Fan. 2016. Data center energy

consumption modeling: A survey. IEEE Communications Surveys and Tutorials 18
(2016), 732–794.

[24] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy Zwaenepoel.

2015. Hawk: Hybrid Datacenter Scheduling. In 2015 USENIX Annual Technical
Conference (USENIX ATC ’15).

[25] William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch Transformers:

Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. CoRR
abs/2101.03961 (2021).

[26] Dror G. Feitelson. 1996. Packing schemes for gang scheduling. In Job Scheduling
Strategies for Parallel Processing.

[27] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo

Fonseca. 2012. Jockey: Guaranteed Job Latency in Data Parallel Clusters. In

Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys
’12).

[28] Rong Ge, Ryan Vogt, Jahangir Majumder, Arif Alam, Martin Burtscher, and

Ziliang Zong. 2013. Effects of Dynamic Voltage and Frequency Scaling on a K20

GPU. In 42nd International Conference on Parallel Processing (ICPP ’13).
[29] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Anantha-

narayanan. 2016. Altruistic Scheduling in Multi-Resource Clusters. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
’16).

[30] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan

Kulkarni. 2016. GRAPHENE: Packing and Dependency-Aware Scheduling for

Data-Parallel Clusters. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’16).

[31] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,

Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU Cluster

Manager for Distributed Deep Learning. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’19).

[32] James Douglas Hamilton. 2020. Time Series Analysis. Princeton University Press.

[33] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.

Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform for

Fine-Grained Resource Sharing in the Data Center. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’11).

[34] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and KyoungSoo

Park. 2021. Elastic Resource Sharing for Distributed Deep Learning. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI ’21).

[35] Rob J. Hyndman and Anne B. Koehler. 2006. Another look at measures of forecast

accuracy. International Journal of Forecasting 22 (2006), 679–688.

[36] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. 2007. Algorithms for Power

Savings. ACM Transactions on Algorithms 3 (2007), 41–es.
[37] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.

Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. In

Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems (EuroSys ’07).

[38] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram Rao, Konstantin

Makarychev, and Matthew Caesar. 2015. Network-Aware Scheduling for Data-

Parallel Jobs: Plan When You Can. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM ’15).

[39] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-

cong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU Clus-

ters for DNN Training Workloads. In 2019 USENIX Annual Technical Conference
(USENIX ATC ’19).

[40] Wayne Joubert and Shi-Quan Su. 2012. An Analysis of Computational Work-

loads for the ORNL Jaguar System. In Proceedings of the 26th ACM International
Conference on Supercomputing (ICS ’12).

[41] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, ShravanMatthur Narayana-

murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru

Krishnan, Janardhan Kulkarni, and Sriram Rao. 2016. Morpheus: Towards Au-

tomated SLOs for Enterprise Clusters. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’16).

[42] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting

Decision Tree. In Advances in Neural Information Processing Systems (NeurIPS
’17).

[43] Tan N. Le, Xiao Sun, Mosharaf Chowdhury, and Zhenhua Liu. 2020. AlloX:

Compute Allocation in Hybrid Clusters. In Proceedings of the Fifteenth European
Conference on Computer Systems (EuroSys ’20).

[44] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,

Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling

Distributed Machine Learning with the Parameter Server. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Implementation (OSDI
’14).

[45] Wenjie Liu, Zhihui Du, Yu Xiao, David A. Bader, and Chen Xu. 2011. A Waterfall

Model to Achieve Energy Efficient Tasks Mapping for Large Scale GPU Clusters.

In 25th IEEE International Symposium on Parallel and Distributed Processing,
Workshop Proceedings (IPDPS ’11).

[46] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkatara-

man, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. 2020. Themis: Fair

and Efficient GPU Cluster Scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’20).

[47] Xinxin Mei, Xiaowen Chu, Hai Liu, Yiu-Wing Leung, and Zongpeng Li. 2017.

Energy efficient real-time task scheduling on CPU-GPU hybrid clusters. In IEEE
Conference on Computer Communications (INFOCOM ’17).

https://docs.nvidia.com/dgx/dgx1-user-guide
https://www.lustre.org/
https://memcached.org/
https://developer.nvidia.com/nccl
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://www.nvidia.com/en-us/data-center/nvlink/

SC ’21, November 14–19, 2021, St. Louis, MO, USA Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang

[48] Xinxin Mei, Qiang Wang, and Xiaowen Chu. 2017. A survey and measurement

study of GPU DVFS on energy conservation. Digital Communications and Net-
works 3 (2017), 89–100.

[49] Xinxin Mei, QiangWang, Xiaowen Chu, Hai Liu, Yiu-Wing Leung, and Zongpeng

Li. 2021. Energy-aware Task Scheduling with Deadline Constraint in DVFS-

enabled Heterogeneous Clusters. CoRR abs/2104.00486 (2021).

[50] David Meisner, Brian T. Gold, and Thomas F. Wenisch. 2009. PowerNap: Elimi-

nating Server Idle Power. In Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’09).

[51] Richard L. Moore, Adam Jundt, Leonard K. Carson, Kenneth Yoshimoto, Amin

Ghadersohi, and William S. Young. 2012. Analyzing Throughput and Utilization

on Trestles. In Proceedings of the 1st Conference of the Extreme Science and En-
gineering Discovery Environment: Bridging from the EXtreme to the Campus and
Beyond (XSEDE ’12).

[52] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,

and Matei Zaharia. 2020. Heterogeneity-Aware Cluster Scheduling Policies for

Deep Learning Workloads. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’20).

[53] Gonzalo Navarro. 2001. A Guided Tour to Approximate String Matching. Comput.
Surveys 33 (2001), 31–88.

[54] JunWoo Park, Alexey Tumanov, Angela Jiang, Michael A. Kozuch, and Gregory R.

Ganger. 2018. 3Sigma: Distribution-Based Cluster Scheduling for Runtime Un-

certainty. In Proceedings of the Thirteenth EuroSys Conference (EuroSys ’18).
[55] Tirthak Patel, Zhengchun Liu, Raj Kettimuthu, Paul Rich, William Allcock, and

Devesh Tiwari. 2020. Job Characteristics on Large-Scale Systems: Long-Term

Analysis, Quantification, and Implications. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’20).

[56] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018.

Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters.

In Proceedings of the Thirteenth EuroSys Conference (EuroSys ’18).
[57] Lutz Prechelt. 1998. Early Stopping - But When? Springer Berlin Heidelberg,

55–69.

[58] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger,

Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P. Xing. 2021. Pollux:

Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning. In 15th
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’21).

[59] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, RandyH. Katz, andMichael A.

Kozuch. 2012. Heterogeneity and Dynamicity of Clouds at Scale: Google Trace

Analysis. In Proceedings of the ACM Symposium on Cloud Computing (SoCC ’12).
[60] Gonzalo P. Rodrigo, P.-O. Östberg, Erik Elmroth, Katie Antypas, Richard Ger-

ber, and Lavanya Ramakrishnan. 2018. Towards understanding HPC users and

systems: A NERSC case study. J. Parallel and Distrib. Comput. 111 (2018), 206–221.
[61] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,

Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo

Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the

Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC ’20).

[62] Nikolay A. Simakov, Joseph P. White, Robert L. DeLeon, Steven M. Gallo,

Matthew D. Jones, Jeffrey T. Palmer, Benjamin Plessinger, and Thomas R. Furlani.

2018. A Workload Analysis of NSF’s Innovative HPC Resources Using XDMoD.

CoRR abs/1801.04306 (2018).

[63] Abeda Sultana, Li Chen, Fei Xu, and Xu Yuan. 2020. E-LAS: Design and Analysis

of Completion-Time Agnostic Scheduling for Distributed Deep Learning Cluster.

In 49th International Conference on Parallel Processing (ICPP ’20).
[64] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence

LearningwithNeural Networks. In Proceedings of the 27th International Conference
on Neural Information Processing Systems (NeurIPS ’14).

[65] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. DeepFace:

Closing the Gap to Human-Level Performance in Face Verification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’14).

[66] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xiaowen Chu. 2019. The Impact

of GPU DVFS on the Energy and Performance of Deep Learning: An Empirical

Study. In Proceedings of the Tenth ACM International Conference on Future Energy
Systems (e-Energy ’19).

[67] Sean J. Taylor and Benjamin Letham. 2018. Forecasting at Scale. The American
Statistician 72 (2018), 37–45.

[68] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin,

Steven Hand, Mor Harchol-Balter, and John Wilkes. 2020. Borg: the Next Gener-

ation. In Proceedings of the Fifteenth European Conference on Computer Systems
(EuroSys ’20).

[69] Alexey Tumanov, Angela Jiang, JunWoo Park, Michael A. Kozuch, and Gregory R.

Ganger. 2016. JamaisVu: Robust Scheduling with Auto-Estimated Job Runtimes.
Technical Report. Carnegie Mellon University.

[70] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-

hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed,

and Eric Baldeschwieler. 2013. Apache Hadoop YARN: Yet Another Resource

Negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing
(SoCC ’13).

[71] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,

and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for Large-Scale

Advanced Analytics. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’16).

[72] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. 2011. ARIA: Au-

tomatic Resource Inference and Allocation for Mapreduce Environments. In

Proceedings of the 8th ACM International Conference on Autonomic Computing
(ICAC ’11).

[73] Mengdi Wang, Chen Meng, Guoping Long, Chuan Wu, Jun Yang, Wei Lin, and

Yangqing Jia. 2019. Characterizing Deep Learning TrainingWorkloads onAlibaba-

PAI. In Proceedings of the 2019 IEEE International Symposium on Workload Char-
acterization (IISWC ’19).

[74] QiangWang and Xiaowen Chu. 2020. GPGPU Performance EstimationWith Core

and Memory Frequency Scaling. IEEE Transactions on Parallel and Distributed
Systems 31 (2020), 2865–2881.

[75] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos

Maltzahn. 2006. Ceph: A Scalable, High-Performance Distributed File System. In

Proceedings of the 7th Symposium on Operating Systems Design and Implementation
(OSDI ’06).

[76] Nicole Wolter, Michael O Mccracken, Allan Snavely, Lorin Hochstein, Taiga

Nakamura, and Victor Basili. 2006. What ’ s working in HPC : Investigating HPC

User Behavior and Productivity. CTWatch Quarterly 2 (2006), 1–14.

[77] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,

Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu

Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Sched-

uling for Deep Learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’18).

[78] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui

Feng,Wei Lin, and Yangqing Jia. 2020. AntMan: Dynamic Scaling on GPUClusters

for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’20).

[79] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux

Utility for Resource Management. In Job Scheduling Strategies for Parallel Pro-
cessing.

[80] Anas A. Youssef and Diwakar Krishnamurthy. 2017. Burstiness-aware service

level planning for enterprise application clouds. Journal of Cloud Computing 6

(2017), 1–21.

[81] Peifeng Yu andMosharaf Chowdhury. 2020. Fine-Grained GPU Sharing Primitives

for Deep Learning Applications. In Proceedings of Machine Learning and Systems
(MLSys ’20).

[82] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.

2020. An Empirical Study on Program Failures of Deep Learning Jobs. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering
(ICSE ’20).

[83] Sheng Zhang, Zhuzhong Qian, Zhaoyi Luo, Jie Wu, and Sanglu Lu. 2016.

Burstiness-Aware Resource Reservation for Server Consolidation in Computing

Clouds. IEEE Transactions on Parallel and Distributed Systems 27 (2016), 964–977.
[84] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Fan Yang, Lidong Zhou,

Mao Yang, Francis C.M. Lau, Yuqi Wang, Yifan Xiong, and Bin Wang. 2020.

HiveD: Sharing a GPU Cluster for Deep Learning with Guarantees. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’20).

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
GPU Datacenter Description

Helios is a private datacenter dedicated to developing DL mod-
els for research and production in SenseTime. It contains thousands
of compute nodes, and each node is equipped with 8 GPUs.

In this paper, we select 4 representative multi-tenant clusters
from Helios, including Venus, Earth, Saturn, and Uranus. These
four clusters consist of 802 compute nodes with 6416 GPUs. Saturn
is a heterogeneous cluster with mixed NVIDIA Pascal and Volta
GPUs, while the other three clusters are composed of identical Volta
or Pascal GPUs. The inter-node communication within the same
RDMA domain is achieved via the high-speed InfiniBand.
Analysis Platform Description

We collect deep learning jobs from each of the 4 clusters in
Helios, which serves as the basis of our analysis and system design
in this paper. These four traces span 6 months from April 2020 to
September 2020, covering a total of 3.36 million jobs. We perform
the analysis of these traces on Ubuntu 20.04 using JupyterLab 3.0.
Required python libraries for characterization and visualization
include pandas 1.2.3, numpy 1.19.2, matplotlib 3.3.4, and seaborn
0.11.1.

Our traces dataset and analysis codes are publicly available.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/S-Lab-System-Group ⌋

/HeliosArtifact↩→

Artifact name: HeliosArtifact

Persistent ID:

https://github.com/S-Lab-System-Group/HeliosData↩→

Artifact name: HeliosData

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Datacenter: Each node is equipped
with dual-sockets Intel Xeon Gold 6146, eight NVIDIA Tesla V100
SXM2 32GB, 376 GB of memory, and connected through Infiniband
EDR in Venus and Earth. Analysis: The workstation is equipped
with Intel Core i9-10900, NVIDIA GeForce RTX 2080 Ti and 32 GB
of memory.

Operating systems and versions: Datacenter: CentOS 7, Analysis:
Ubuntu 20.04

Compilers and versions: Analysis: Python 3.8

Applications and versions: Analysis: JupyterLab 3.0

Libraries and versions: Analysis: pandas 1.2, numpy 1.19, mat-
plotlib 3.3, seaborn 0.11, lightgbm 3.1

Key algorithms: Gradient Boosting Decision Tree

Input datasets and versions: Helios trace, Philly trace

URL to output from scripts that gathers execution environment
information.
https://github.com/S-Lab-System-Group/HeliosArtifact ⌋

/tree/master/enviornment↩→

	Abstract
	1 Introduction
	2 Background
	2.1 Helios Datacenter
	2.2 Workloads in Helios
	2.3 DL Job Traces from Helios

	3 Characterization of DL Jobs
	3.1 Cluster Characterization
	3.2 Job Characterization
	3.3 User Characterization

	4 A Prediction-Based Framework
	4.1 Framework Overview
	4.2 Quasi-Shortest-Service-First Scheduling
	4.3 Cluster Energy Saving

	5 Related Work
	6 Discussions
	6.1 Extension to Small-scale Clusters.
	6.2 Future Works

	7 Conclusion
	Acknowledgments
	References

