
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Primo: Practical Learning-Augmented Systems
with Interpretable Models

Qinghao Hu, Nanyang Technological University and S-Lab, NTU; Harsha Nori,
Microsoft; Peng Sun, SenseTime; Yonggang Wen and Tianwei Zhang,

Nanyang Technological University
https://www.usenix.org/conference/atc22/presentation/hu

PRIMO: Practical Learning-Augmented Systems with Interpretable Models

Qinghao Hu1,2 Harsha Nori3 Peng Sun4 Yonggang Wen1 Tianwei Zhang1

1Nanyang Technological University 2S-Lab, NTU 3Microsoft 4SenseTime Research

Abstract
While machine learning has demonstrated remarkable perfor-
mance in various computer systems, some substantial flaws
can prohibit its deployment in practice, including opaque
decision processes, poor generalization and robustness, as
well as exorbitant training and inference overhead. Motivated
by these deficiencies, we introduce PRIMO, a unified frame-
work for developers to design practical learning-augmented
systems. Specifically, (1) PRIMO provides two interpretable
models (PrAM and PrDT), as well as a Distill Engine, to sup-
port different system scenarios and deployment requirements.
(2) It adopts Bayes Optimization to automatically identify the
optimal model pruning strategy and hyperparameter configu-
ration. (3) It also implements two tools, Monotonic Constraint
and Counterfactual Explanation, to achieve transparent de-
bugging and guided model adjustment. PRIMO can be applied
to different types of learning-augmented systems. Evaluations
on three state-of-the-art systems show that PRIMO can pro-
vide clear model interpretations, better system performance,
and lower deployment costs.

1 Introduction
Over the years, machine learning (ML) has been widely
adopted to optimize systems across many fields, e.g., stor-
age [29,82,85], network [66,77,95], security [24,28,74], com-
piler optimization [8,93,94] and cluster scheduling [65,89,92].
These learning-augmented systems demonstrate marvelous
performance compared with conventional heuristic or mathe-
matical optimized systems.

However, most of these applied models are very complex
and treated as black-boxes to developers, which brings sig-
nificant gaps in deploying them in practice. First, building
a production-level learning-augmented system can incur
huge costs. From the experience at Microsoft [42], the model
training process could take days to weeks with massive data.
Some systems require frequent model updates to adapt to
dynamic environment changes, whose cost often exceeds en-
terprise expectations. For some scenarios with limited data
samples, developers have to use techniques to synthesize
training samples [12, 45, 96], which inevitably introduce bias
to the model and cause performance deterioration in prac-
tice [8, 10, 66]. Moreover, the inference process of these com-
plicated models can pose heavy computational pressure to

systems which have high real-time requirements [43, 81, 82],
which can significantly restrict parallel capabilities and affect
scalability in practice.

Second, the prediction process of these black-box mod-
els are unintelligible to humans. Developers lack under-
standing and trust of the model’s behavior [19, 53, 91], which
makes it difficult for them to perform model adjustments and
ad hoc debugging in practical scenarios. Some efforts have
been made to improve system transparency through interpret-
ing black-box models [26, 27, 55]. They typically build surro-
gate models to obtain explanations for individual predictions,
thus validating model behaviors and diagnosing system mis-
takes. However, they cannot provide an interpretation fidelity
guarantee, and therefore the corresponding explanations are
unreliable and potentially misleading [58, 70]. In addition,
they cannot address the aforementioned system cost issue.

In this paper, we aim to resolve the above challenges and
facilitate transparent, accurate and lightweight system de-
ployment in practice. We introduce PRIMO (Prior-based
interpretable model optimization), the first unified frame-
work that assists developers to design and optimize learning-
augmented systems with interpretable models. The design
of PRIMO is based on two key insights. First, simple inter-
pretable models have the capability of handling complex sys-
tem problems. Interpretable models do not sacrifice prediction
accuracy [35,62,72], and simple model structures with low re-
source overhead are very suitable for real-time systems. Their
effectiveness is often underestimated [70]. Second, prior expe-
rience and domain knowledge can be leveraged by developers
to further optimize the interpretable models [20, 76], which is
hard to achieve for black-box models.

PRIMO makes several innovations to enhance learning-
augmented systems. First, to provide comprehensive support
for different systems, PRIMO introduces two interpretable
model algorithms: PrAM is designed for better prediction accu-
racy and PrDT applies to systems with strict latency or compu-
tation constraints. PRIMO can help developers select a suitable
model automatically based on their system requirements, in-
cluding latency, accuracy, and resource budget. In addition
to training models directly, PRIMO also supports distilling
existing complex models, which applies to exploration-based
systems with reinforcement learning (RL) [23, 49, 56, 59].

Second, to fully exploit the potential of interpretable mod-

USENIX Association 2022 USENIX Annual Technical Conference 519

els, we design several built-in mechanisms to optimize model
performance leveraging prior information. (1) PRIMO imple-
ments Bayes Optimization to find the optimal model pruning
strategy and hyperparameter configurations for higher pre-
diction accuracy and lower computation overhead. It fully
takes advantage of prior search information to minimize
the search space and training cost. (2) PRIMO also facili-
tates model post-processing for developers with their domain
knowledge. Specifically, it provides two tools for model ad-
justment through adding Monotonic Constraints and transpar-
ent debugging with Counterfactual Explanations.

Based on these innovations, PRIMO provides not only pre-
cise and comprehensive interpretations for developers to un-
derstand and adjust models, but also better prediction accuracy
and smaller overhead. To extensively evaluate these benefits
in real scenarios, we apply PRIMO to three state-of-the-art
learning-augmented systems, including two online systems
(LinnOS for flash storage [29] and Pensieve for video steam-
ing [51]), and an offline system (Clara for SmartNIC offload-
ing [66]). For LinnOS, PRIMO provides a 2.8× system perfor-
mance improvement, and reduces model training time by over
100×, as well as inference latency by over 20×. For Clara,
PRIMO beats a series of black-box models in prediction accu-
racy and saves over 10× training cost. For Pensieve, PRIMO
achieves better generalization ability and a 79× inference la-
tency reduction. We believe PRIMO can bring similar benefits
to other learning-augmented systems as well.

To summarize, we make the following contributions:

• To the best of our knowledge, PRIMO is the first framework
to provide inherent interpretability for learning-augmented
systems development.

• We design built-in mechanisms and adjustment tools for
developers to achieve transparent, accurate and lightweight
system deployment in practice.

• For the first time, we demonstrate that simple interpretable
models can outperform complex black-box techniques in
various real systems.

2 Background and Motivation

2.1 Learning-Augmented Systems
Learning-augmented systems apply machine learning tech-
niques to optimize system performance [42]. They typically
build various ML models to obtain preeminent system poli-
cies from historical execution data, such as Support Vec-
tor Machines (SVM) [65, 66], Random Forest (RF) [5, 86],
Gradient Boosting Decision Tree (GBDT) [32, 92]. With
the popularity of deep learning (DL) algorithms, they were
also introduced to further enhance systems, e.g., Deep Neu-
ral Network (DNN) [29, 82], Convolutional Neural Network
(CNN) [43, 53], Recurrent Neural Network (RNN) [66, 90]
and Reinforcement Learning (RL) [41, 51]. We classify them
into the following categories.

Taxonomy. Learning-augmented systems typically follow
similar design workflows to integrate ML models into system
operations. Based on the optimization type, they can be classi-
fied into two categories. (1) Prediction-based systems utilize
the supervised learning paradigm (e.g., classification, regres-
sion) to optimize system problems. (2) Exploration-based
systems usually adopt reinforcement learning to learn optimal
policies in an explore-exploit way. Since there are relatively
fewer unsupervised learning-based systems in practice, we
consider them as our future work (§8).

Based on system requirements and application scenarios,
learning-augmented systems can be divided into the following
two types. (1) Online systems require the ML model to make
prompt predictions for real-time data. Developers need to
consider model inference latency and computation overhead,
in addition to prediction accuracy. (2) Offline systems usually
do not need to deploy ML models for real-time serving and
have no latency or computation requirements. These systems
are performance-critical and the objective of ML models is to
improve prediction accuracy.

PRIMO is designed as a unified framework, providing
respective optimization mechanisms for different types of
learning-augmented systems.

2.2 Challenges and Motivation
While plenty of work has demonstrated the potential of ML
techniques in improving system performance, there exist
several challenges in the development and deployment of
learning-augmented systems in practice.
Model development. First, building a qualified ML model
for the target system has the following two challenges:
• C1: high training and tuning cost. As stated by Microsoft

AutoSys [42], costs of ML model training often exceeds en-
terprise expectations. Real system environments are dynam-
ically changing and stale models will cause performance de-
terioration. Therefore, frequent model fine-tuning or retrain-
ing is necessary, which could take days to weeks [42, 52]
in order to outperform heuristic algorithms. If there are not
enough GPU resources, the update time will become even
more intolerable for DL models.

• C2: susceptible to the quantity and quality of data. A
large amount of high-quality training data are essential to
produce satisfactory ML models. However, in some cases,
insufficient data [8, 10, 66] or excessive data collection
cost [52,88] hinder developers from training qualified mod-
els. Possible solutions include data augmentation and syn-
thesis [12, 45, 96]. Nevertheless, owing to the sophisticated
distribution of real-world data, the generated data inevitably
introduce bias and shift to the learning model [66], which
could compromise the system performance in practice.

Model deployment. Second, deploying ML models in prac-
tice has interpretability and inference overhead issues:
• C3: opaque decision making process. Developers mainly

520 2022 USENIX Annual Technical Conference USENIX Association

Strategies Interpretation
Fidelity

Local
Interpretation

Global
Interpretation

Transparent
Adjustment

Deployment
Cost

Accuracy
Ú

Roustness
Ú

Latency
Ø

Black-box models (e.g., DNN, RL, GBDT) 8 8 8 8 $$$ H H H

Interpreting black-box models [26, 67] 8 4 8 8 $$$ H H H

Building interpretable models (PRIMO) 4 4 4 4 $ HI HI HI

Table 1: Comparisons of different strategies for learning-augmented systems (I: Performance improvement).

focus on improving key system metrics (e.g., I/O latency
[29], user experience [51]) when designing and evaluat-
ing ML models, while ignoring their interpretability. As
a result, most of these learning models are black-boxes
whose prediction processes are unintelligible to humans
[26, 40, 70]. Due to such opacity, system operators cannot
guarantee model predictions are risk-free and have insuffi-
cient confidence to deploy them.

• C4: difficulty in troubleshooting and adjustment. In or-
der to achieve expected performance in production environ-
ments, system operators typically need to adjust the learning
models according to the actual scenarios [19,53,55], includ-
ing input features alteration, model structure modification,
data augmentation, etc. All these actions require the oper-
ators to have a profound understanding of the system and
the corresponding ML technique [26, 42], which is difficult
when the model is complex. In addition, ad hoc debugging
is another substantial challenge to learning-augmented sys-
tems for black-box models. Improper modifications may
cause severe performance degradation.

• C5: exorbitant deployment overhead. The model deploy-
ment overhead is another key factor for system operators’
consideration [53]. The latency and computation require-
ments of some systems [43, 81, 82] are far more strict than
conventional AI tasks. High inference overhead can cause
side effects to production workloads and limit their paral-
lelism capability [29], which can further restrict deployment
scalability.

2.3 Model Interpretation as a Solution
One possible solution to address the above challenges is
model interpretation. There are two primary directions to
apply model interpretation for learning-augmented systems.

2.3.1 Interpreting Black-box Models.

The essential idea is to leverage existing interpretation
methodologies to interpret the black-box models, making
them more intelligible and transparent. A variety of interpre-
tation tools (e.g., Lime [67], Captum [39], Shap [48]) were
designed to explain the mechanisms of DNN models for CV
and NLP tasks. Similar studies were also performed for other
domains. For instance, Lemna [26] employs a mixture regres-
sion model [36] to interpret RNN models in DL-based security
applications. Metis [55] proposes to interpret networking sys-
tems with the decision tree or hypergraph. However, we argue
that the idea of interpreting black-box models is not sufficient

for learning-augmented systems for the following reasons.
(1) No fidelity guarantee. These tools typically interpret

black-box models in a post hoc way, where another local
surrogate model is created to explain the original model. They
cannot have a fidelity guarantee with respect to the original
model. Therefore, the corresponding explanations are often
unreliable, and can be misleading [58, 70]. The fidelity of
some widely applied interpretation methods (e.g., attention-
based explain [84]) are still in dispute [34, 83]. Appendix B.1
presents an example of contradictory XGBoost explanations.

(2) Limited interpretation. Most existing tools (e.g., Lime,
Lemna) focus on explaining individual predictions (local in-
terpretation) instead of the entire model behavior (global in-
terpretation). Thus, the interpretation results typically cannot
yield enough information for system troubleshooting. Ap-
pendix B.2 shows their insufficiency for global understanding
and model surrogate.

(3) Requiring domain knowledge. Different systems may
employ different models and algorithms. There is no unified
tool that can provide comprehensive support for interpret-
ing arbitrary models. Consequently, domain knowledge and
manual efforts are required to implement the tools and under-
stand the explanation results. This poses a huge challenge for
developers to design a learning-augmented system.

(4) Incapability of handling other challenges. Those tools
only focus on model interpretation and understanding (C3 &
C4), but ignore other challenges discussed in §2.2.

2.3.2 Building Interpretable Models

A more promising direction, which is adopted in PRIMO, is
to train interpretable models directly for learning-augmented
systems. Interpretable models refer to the models that are in-
herently intelligible, where their explanations provided by
themselves are faithful to what the models actually com-
pute [58, 70]. Common interpretable models include linear
regression, logistic regression, decision tree, decision list,
etc. They have great potential to enhance different types of
learning-augmented systems.

According to our observation from recent state-of-the-art
learning-augmented systems [1], the scale of models in these
systems tend to be relatively smaller than popular production-
level AI models (although they are still too complex for hu-
mans to understand). For instance, the number of neurons in
a RL-based system is typically less than 10K [19]. This is
because most data samples in learning-augmented systems
are well structured, with good representations in terms of
naturally meaningful features. In such scenarios, a much sim-

USENIX Association 2022 USENIX Annual Technical Conference 521

System States

Workload Features

User Configurations

···

Data

Counterfactual
Explanation

Prior-based Adjustment

Automatic Pruning

Input Feature Optimization

Transparent Debugging

Intelligible Decision Making

Monotonic
Constraint

Post-Processing Optimization

Transparent

Accurate

Lightweight

Deploy

Interpretable Models Training

Distill
Engine

Bayes
Optimization

Auto

Model

Selector

PrDT

PrAM

yes

no

yes

yes

yes

no

no

no

Constraints

Latency

Performance

Resource

···

Figure 1: The workflow of learning-augmented system development using PRIMO.

pler interpretable model can give comparable performance to
complex black-box models [70]. Therefore, developers can
employ interpretable models for their systems, which require
less data, training and tuning cost (C1 & C2). The models
give more information for system operators to understand
(C3), troubleshoot and adjust (C4), and the inference speed
is much faster than the original black-box model (C5).

Summary. The benefits of PRIMO compared with other meth-
ods are summarized in Table 1. It can provide not only highly
precise and comprehensive interpretations for developers to
understand and adjust models, but also higher accuracy and ro-
bustness, and smaller training and inference overhead. These
greatly facilitate model deployment in practice.

3 PRIMO Design
We introduce PRIMO, a unified framework that assists devel-
opers to design practical learning-augmented systems. Par-
ticularly, (1) we employ transparent and deterministic in-
terpretable models to circumvent the uncertainty issues of
black-box model inference. (2) We integrate new tools for de-
velopers to leverage prior knowledge to optimize interpretable
models automatically. (3) We design a built-in mechanism
to search optimal hyperparameters in a fast and convenient
way, without extra effort from the developers. Based on these
designs, PRIMO can address all the challenges in §2.2.

3.1 Framework Overview
PRIMO optimizes both the training and post-processing stages
of building learning-augmented systems. Figure 1 illustrates
the development workflow with PRIMO. In the model training
stage, PRIMO provides two interpretable model algorithms
(PrAM and PrDT) designed for different system scenarios1.
PRIMO helps developers automatically select suitable algo-
rithms based on their system requirements including latency,
accuracy, and resource budget. It supports training the inter-
pretable model directly, or converting an existing complex
black-box model into a simple interpretable model through
the Distill Engine. We also leverage Bayes Optimization to
find the optimal model pruning strategy and hyperparame-
ter configurations for higher prediction accuracy and lower

1Other interpretable models can also be conveniently integrated into this
framework, which will be considered in our future work.

computation overhead. After the model is trained, PRIMO
offers several optimization tools in the post-processing stage,
e.g., prior-based model adjustment through adding monotonic
constraints, transparent debugging with counterfactual expla-
nations. Below we detail the mechanism of each component.

3.2 Interpretable Models
As introduced in §2.1, different system scenarios have differ-
ent requirements for the learning models. To this end, PRIMO
employs two types of interpretable model algorithms: PrAM is
designed for better prediction accuracy and PrDT applies to
systems with strict latency constraint or computation sensitiv-
ity. PRIMO supports automatic model selection based on the
demands specified by the developers.

3.2.1 PrAM: Addictive Model based Method

Our first interpretable model, PrAM, is based on the Standard
Generalized Additive Models (GAMs) [30]. GAMs consist of
a series of shape functions fi(·) and an intercept µ0 (Equation
1). Since each shape function considers only one univariate
term (the ith feature xxxi) and their combination is additive,
GAMs are interpretable: we can clearly understand the con-
tribution of each single feature to the final prediction.

Compared with linear interpretable models (e.g., logis-
tic regression), GAMs can cope with more complex predic-
tion tasks because shape functions are typically nonlinear
and have better fitting capability. To further increase model
performance, we adopt the state-of-the-art GAM algorithm:
GA2M [47], which additionally considers the interactions of
two features and maintains the interpretability (more details
are in Appendix A.1). GA2M has the following form:

g(E[y | xxx]) = µ0 +∑ fi
(
xxxi)︸ ︷︷ ︸

GAM

+∑ fi j
(
xxxi,xxx j)︸ ︷︷ ︸

Interactions

(1)

where g(·) is a link function that adapts GA2M to different
tasks, e.g., regression (identity), classification (logistic func-
tion); fi j(·) represents the interaction effect of features i and
j, which can be visualized as a two-dimensional heatmap.

In our implementation, PrAM extends the open-source li-
brary EBM [63] to obtain the optimal model with high com-
pactness and accuracy. Compared to the complex DL models,
PrAM can not only provide interpretability, but also takes less

522 2022 USENIX Annual Technical Conference USENIX Association

training resources (without the need of GPUs) and training
data samples, significantly reducing the training time and cost.

3.2.2 PrDT: Decision Tree based Method

Our second interpretable model PrDT is constructed from
Decision Trees (DTs). DTs are binary tree-structured models
where each branch node tests a condition and each leaf node
makes a prediction [71]. Because DTs are non-parametric
and can be essentially expressed as an equivalent rule list,
they are transparent and simple to interpret how a prediction
is obtained. Besides, the decision-making processes of DTs
can be visualized so developers can easily adjust the trees
according to the system requirements. They present powerful
prediction capability for both classification and regression
tasks, even compared with complex black-box models.

In addition to the excellent interpretability and accuracy,
DTs have extremely low computation overhead and inference
latency. Consequently, they are applicable to many scenarios
with strict latency and resource constraints [29, 61]. Besides,
DTs also exhibit other benefits, including robust performance
under dynamic system environments, requiring less training
data and no data preprocessing overhead during inference.

It is necessary to optimize the complexity of a DT to avoid
the overfitting issue, which can affect the model generaliza-
tion, accuracy and computation overhead. Instead of adding
constraints (e.g., maximum depth, minimum number of sam-
ples for a leaf node) during DT training, PrDT trains a full de-
cision tree without any limitation to capture more information
from the training dataset. We adopt minimal cost-complexity
pruning [14] to prune the full tree in the post-processing stage,
which is elaborated in Appendix A.2.

3.3 Model Training
PRIMO supports two training modes. (1) Direct: the developer
can train an interpretable model from scratch. This applies
for most prediction-based systems. (2) Distill: the developer
can generate an interpretable model from the original black-
box model through the Distill Engine. This is mainly for
exploration-based systems. To obtain high-quality models,
both modes support the integration of Bayes Optimization for
efficient model structure and hyperparameter search.

3.3.1 Bayes Optimization

There exists a trade-off between the model complexity and ac-
curacy for both interpretable models. In order to find accurate
and succinct models, PRIMO leverages Bayes Optimization
(BO) [76], an iterative algorithm to automatically search for
the optimal model configurations.
Objective function. For both PrAM and PrDT, we build a uni-
versal model scoring function S(θ) to quantify the model
performance and complexity as the search objective:

S(θ) = P(θ)+λ ·C(θ)γ (2)

where P(θ) represents the model performance (e.g., classifi-
cation accuracy) under hyperparameters θ during validation;

Decision Boundary

CF1 (Feature X: 2 3)

CF2 (Feature X: 2 4,
Feature Y: 8 6)

Instance A

Figure 2: Illustration for the counterfactual explanation.

λ is a knob that controls the model complexity according to
users’ preference; C(θ) is a metric for model complexity. For
PrDT, C(θPrDT) =Nleaves×Ndepth, where we consider both the
number of tree leaves and tree depth since unbalanced-deeper
trees typically cost longer condition inference time. For PrAM,
C(θPrAM) = Ninteractions×Nmaxbins, where both the number of
feature interaction terms and maximum number of bins in the
feature histogram are included. Besides, the normalization
factor γ regulates the effect of the model complexity.

Prior-based hyperparameter search. Specifically, PRIMO
employs Gaussian Process (GP) as the probabilistic surro-
gate model of the objective function S(θ) in Equation 2. The
prediction of GP follows a normal distribution: p(S | θ,Θ) =
N
(
S | µ̂, σ̂2

)
, where Θ indicates the hyperparameter search

space. To determine which point should be evaluated next,
PRIMO adopts expected improvement (EI) as the acquisition
function to trade-off exploration and exploitation [20]. In
each iteration, PRIMO generates a set of hyperparameters and
evaluates them on the interpretable model to obtain new re-
sults which are used to update the surrogate model. Compared
with Grid Search (GS) and Random Search (RS) [13], BO is
more efficient since it fully utilizes the prior information to
minimize the search space. For instance, as shown in Figure
17 in Appendix A.2, BO can rapidly reduce the search space
to a smaller size (10−5~10−2) for a better focus.

3.3.2 Distill Engine

In some scenarios, the learning models require special opti-
mization. For instance, LinnOS [29] leverages biased train-
ing to reduce the false submit rate while causing the higher
false revoke rate. PRIMO introduces the Distill Engine, which
can build an interpretable surrogate model to approximate
the behavior of the original black-box learning model using
knowledge distillation [7, 31].

Another application of the Distill Engine is RL policy ex-
traction. Both PrAM and PrDT work well for prediction-based
systems using supervised learning, but are less supportive for
exploration-based systems due to their incompatibility with
RL. A series of works [11, 69, 75] have demonstrated the
feasibility of converting NN-based learning policies to an
interpretable models. PRIMO adopts Viper [11] to perform
RL policy extraction. Specifically, we collect the trajectories
of {sssi,ai} pairs (i.e., system states sssi and actions ai of learned
policy π(sssi,ai)) generated by the original RL model and per-
form supervised learning to build the interpretable models.

USENIX Association 2022 USENIX Annual Technical Conference 523

System Scenario ML Algorithm Type Primo

LinnOS [29] Flash Storage I/O DNN Online PrDT (Direct)

Clara [66] SmartNIC Offloading
Mixture (LSTM,

GBDT, SVM)
Offline PrAM (Direct)

Pensieve [51] Video Streaming RL Online PrDT (Distill)

Table 2: Summary of case studies for PRIMO evaluation.

To obtain a robust policy, we augment the poor-performing
pairs and train the model iteratively until it is converged.

3.4 Post-Processing Optimization
After the interpretable model is built, developers can use their
prior knowledge to further optimize the model and enhance
the system performance. PRIMO designs two tools to assist
developers in model post-processing. Note that these oper-
ations are optional since generally the trained interpretable
models already achieve satisfactory performance.

3.4.1 Monotonic Constraint

In many learning-augmented systems, the input features ex-
hibit a monotonic relationship with the output values (e.g.,
higher video bitrate selection with better bandwidth). But the
corresponding model often presents a non-monotonic pattern
due to the sub-optimal construction strategy or noisy training
data (e.g., outlier data points, biased synthetic data). This can
lead to unstable performance and intelligibility degradation
in practice. To this end, PRIMO leverages a method from DP-
EBM [62], which adds monotonic constraints to boosted trees
via post-processing. Specifically, we model this task as an
isotonic regression problem [15] with respect to a complete
order. The objective is to minimize ∑i wi (yi− ŷi)

2 subject to
ŷi ≤ ŷ j and weights wi are strictly positive. We adopt the Pool
Adjacent Violators (PAV) [6] algorithm to obtain an optimal
solution maintaining monotonicity, and use it to replace the
original shape function of PrAM. Our tool only needs develop-
ers to provide the feature name or index and the subsequent
model adjustment process is transparent and automatic.

3.4.2 Counterfactual Explanation

To make modifications to the models, developers need to an-
swer some challenging questions, e.g., which feature related
shape function should be adjusted? how to determine the mod-
ification degree? To help them make reasonable decisions,
we design the Counterfactual Explanation tool in PRIMO to
generate additional insights for model adjustment. As illus-
trated in Figure 2, this tool aims to find smaller change (green
arrow) to the feature values that can alter the prediction to
a predefined output within the dataset. It typically uses the
k-nearest neighbors (kNN) algorithm to find k training in-
stances with the minimum L2 distances [80]. To address the
inefficiency of the brute-force kNN approach, we propose to
use Ball Tree [22] to partition data in a series of nesting hyper-
spheres, thus the distance between a prediction point and the
centroid is sufficient to determine a lower and upper bound on
the distance to all points within the hyper-sphere node. This

Fast

Slow

yes no

yes no yes no

yes nonoyes

noyes
Current queue length

Queue length of the third recent I/O

Latency of the first recent I/O

Input Feature Optimization

LinnOS (31 Input Features)

3 neurons

3×4 neurons

4×4 neurons

Primo (3 Input Features)

Figure 3: (Left) Learned PrDT model for an SSD. The thicker
arrow line denotes the higher frequency. (Right) PRIMO opti-
mizes the input features of LinnOS. Each feature represents a
digit in LinnOS while a complete number in PRIMO.

approach considerably reduces the query time when dealing
with large-scale and high-dimensional datasets. And develop-
ers could perform guided model adjustment easily.

PRIMO Experiments. In the following three sections, we will
present three case studies to demonstrate how PRIMO can
optimize state-of-the-art learning-augmented systems. Table
2 describes these three scenarios. The key observation for
each case is summarized in Appendix C. We believe PRIMO
can be applied to other learning-augmented systems as well.

4 Case Study 1: LinnOS
As the first case, we consider LinnOS [29], a learning-based
operating system that accelerates storage applications. Lin-
nOS adopts a 3-layer neural network (31-256-2, in total of
8706 parameters) for each SSD to precisely predict its perfor-
mance. To achieve this, it collects the traces of real workloads
running on the SSD and obtains fine-grained information (per
I/O), including recent queue lengths and latency. Instead of
predicting the concrete latency values, LinnOS simplifies it
as a binary (fast / slow) classification task through setting
an inflection point (IP). More details about LinnOS and our
implementation can be found in Appendix D.1.

PRIMO automatically selects the PrDT model for LinnOS,
since it has comparable accuracy and lower inference la-
tency than PrAM. For comprehensive evaluation, we consider
two models with different optimization objectives: efficiency-
oriented (PRIMO-E) and performance-oriented (PRIMO-P).
We compare PRIMO with two baselines. (1) Base: the vanilla
Linux I/O mechanism. (2) LinnOS: we set the inflection point
of LinnOS as a constant percentile (at p85 latency) and apply
the biased loss to the model training (all keep the same).

4.1 System Interpretation
The primary goal of PRIMO is to provide interpretation for the
target system. Figure 3 (left) presents the learned decision tree
(PRIMO-E) for one SSD. The explanation of each notation
can be found on the right side. From this tree, we can clearly
understand how PRIMO makes decisions for each prediction

524 2022 USENIX Annual Technical Conference USENIX Association

0 5 10 15
Latency (ms)

60

80

100

Fr
ac

tio
n

(%
)

(a)

Primo-E
Primo-P
LinnOS
Base

Prim
o-E
Prim

o-P
LinnOS

Base
0

500

1000

Av
er

ag
e

La
te

nc
y

(
s)

303.0 267.1

746.1

1010.7

(b)

Figure 4: Overall performance comparisons. (a) CDF of I/O
latency. (b) Average I/O latency.

p90 p95 p99 p99.9 p99.99
0

10

20

30

La
te

nc
y

(m
s)

Primo-E
Primo-P
LinnOS
Base

Figure 5: Tail percentiles of I/O latency.

(Local interpretation). We can also obtain intuitive cognition
of the overall model behavior (Global interpretation) through
observing the thickness of each decision path (arrow lines).

Specifically, the top-2 layers of the DT show PRIMO first
classifies I/O requests from the current queue length (Lc),
indicating this feature can significantly affect the prediction
results. Developers can perform adjustments to Lc thresholds
to optimize system behavior. Because the 4-layer DT only
contains 7 leaves (terminal nodes), each prediction needs to
take at most 4 condition tests at the branch nodes and the
majority of test instances only need to execute 2 condition
tests. This inference overhead is much smaller than the origi-
nal DNN model with 8706 parameters in LinnOS. Moreover,
as shown in Figure 3 (right), PRIMO only takes 3 input fea-
tures without any preprocessing, which further reduces the
model complexity and deployment overhead. On the contrary,
LinnOS needs to perform input data preprocessing for all 9
metrics to form a 31-dimensional input feature (e.g., Lc = 15
needs to be converted into a {0, 1, 5} vector). This opera-
tion is necessary for every I/O read operation, remarkably
exacerbating the inference overhead.

4.2 Performance Analysis
We evaluate the performance of PRIMO in the LinnOS flash
storage I/O scenario from the following two perspectives:

Overall performance. Figure 4 shows the Cumulative Dis-
tribution Function (CDF) and average I/O latency (with the
standard deviation) of each method over three independent
experiments. It is obvious that both PRIMO-E and PRIMO-P
significantly outperform LinnOS. Compared with the base I/O
mechanism, LinnOS reduces 26.2% I/O latency on average,
while PRIMO decreases the I/O latency by 70.0~73.6%. It in-
dicates PRIMO can achieve an additional 2.5~2.8× (PRIMO-E

0 5 10 15 20 25 30 35
Latency (s)

Minimum
(Idle)

Median
(Busy)

Primo-E
Primo-P

LinnOS

Primo-E

Primo-P
LinnOS

SSD Access

Figure 6: Model inference latency. Empty circles represent
the minimum inference latency when the system is idle. Solid
circles represent the inference latency of the median I/O oper-
ation when the system is busy. The vertical line indicates the
basic SSD access latency (reading 4KB data in the idle state).

Primo LinnOS
Inaccuracy

0.0

2.5

5.0

7.5

10.0

Fr
ac

tio
n

(%
)

(a)

Original
Quantized

Primo LinnOS Primo LinnOS
False Submit False Revoke

0

10

20

30

(b)

Original
Perturbed

Figure 7: (a) Quantization impact. (b) Robustness test.

/ PRIMO-P) improvement over LinnOS.
Tail performance. The tail behavior is critical to system per-
formance. Figure 5 presents the average I/O latency and the
range at tail percentiles (from p90 to p99.99). We find Lin-
nOS fails to reduce tail latency on the tail, and the curve
almost overlaps with the Base case. On the contrary, PRIMO-
P achieves 7.9×, 4.3× and 2.3× performance improvement
over the vanilla I/O mechanism at p99, p99.9 and p99.99 re-
spectively. Additionally, PRIMO-P also performs much better
at p90 (2.2×) and p95 (7.5×) compared to LinnOS.

4.3 Effectiveness Analysis
We perform the effectiveness analysis from the following per-
spectives to investigate why PRIMO can outperform LinnOS.
Inference overhead. In Figure 6, we measure the extra in-
ference latency of PRIMO and LinnOS. (1) When the system
is idle, we measure the minimum inference latency. We ob-
serve that LinnOS takes 8µs, while the overhead of PRIMO-E
is almost negligible (≤ 1µs), making the deployment more
lightweight. (2) When the system is busy with heavy I/O op-
erations, LinnOS requires a median inference latency of 33µs
due to the high frequency of preprocessing and inference.
This is even higher than the basic SSD access latency (25µs).
In contrast, PRIMO remains relatively lower inference latency
with smaller overhead.
Quantization. Since floating points are not well supported
in the Linux kernel, the model weights of LinnOS and the
thresholds of PRIMO are converted to integers by quantiza-
tion. This can achieve smaller inference latency at the cost
of accuracy degradation. Figure 7 (a) shows the quantization

USENIX Association 2022 USENIX Annual Technical Conference 525

0.0 0.5 1.0 1.5
Average Absolute Score

Re x Rsum

Rstate x Ic
Ic
Rec

Re

Ae
Rsum

Ai
Rstate

Ric

Rres

Ri

2 1 0 1 2
Feature Score

Ic

Ric

Rsum

Rres

Ai

Re

Ae

Rstate

Ri

Rec

Intercept
 = 47.11

0 10 20 30
Rec Bins

2

1

0

1

2

Sc
or

e

Origin
Monotonic

Figure 8: Interpretation and visualization of the PrAM model in Clara-MS. (Left): Global interpretation of overall feature
importance. (Middle): Local interpretation of each feature’s contribution to individual predictions. (Right): Visualization of the
learned shape function of Rec (blue line), and with the monotonic constraint post-processing optimization (orange line).

Prim
o
Prim

o+
Clara DNN DT

SVM
0

1

2

3

4

M
AE

2.46 2.45 2.45

3.08
3.36

3.98

MazuNAT
DNSProxy

UDPCount
WebGen

30

35

40

45

50

55

N
um

be
r o

f C
or

es

Optimal
Primo+ (MAE=0.85)
Clara (MAE=1.19)

Figure 9: Evaluation on Clara-MS. (Left): Mean Absolute
Error (MAE) of testset. (Right): Prediction of 4 real NFs.

impact on the prediction accuracy. It is evident that the ac-
curacy drop of LinnOS is over 2% and varies significantly
among different SSD models. In comparison, PRIMO-E has
negligible accuracy degradation, as the node threshold values
are naturally integers or the decimal part is 0.5.

Robustness. A good model should exhibit high robustness
against system state drifting. To measure the robustness of
those methods, we synthesize some perturbed samples by
adding Gaussian noise to the test dataset. The noise is added
to all 4 recent I/O queue lengths (σ = 5) and I/O latency
(σ = 100)2. Figure 7 (b) illustrates the false submit and false
revoke rates of LinnOS and PRIMO-E under the original and
perturbed test datasets. Reducing the false submit rate is far
more important since the failover overhead of false revoke
is negligible. It is obvious that PRIMO keeps stable accuracy
under perturbed input while LinnOS presents severe perfor-
mance degradation. The robustness of the interpretable model
in PRIMO derives from fewer input features and the inherent
stability of the tree structure compared with the DNN model.

5 Case Study 2: Clara
Clara [66] is an offline tool that generates offloading insights
for network functions (NFs) on SmartNICs. It can analyze
a legacy NF in its unported form and suggest the optimal
offloading strategies. The main challenge of adopting those
ML techniques in Clara is that insufficient SmartNIC pro-

2Since the current queue length Lc is the most significant feature, we do
not modify its value to avoid changing the real label.

Precision Recall
70

80

90

100

Fr
ac

tio
n

(%
)

Primo
Primo+
Clara
AutoML

KNN
DT
GBDT
DNN

Figure 10: Model precision and recall rates in Clara-AI.

grams can be served to produce training data. Clara has to
utilize YarpGen [45] to generate abundant synthesized pro-
grams. Clara contains several components for the generation
of different offloading insights. Each component adopts a ML
algorithm as described below:
• Multicore Scale-out analysis (Clara-MS). SmartNICs

use multicore parallelism to improve packet processing per-
formance. Clara adopts GBDT [17] to predict the optimal
number of cores for each NF.

• Algorithm Identification (Clara-AI). Certain packet pro-
cessing algorithms in the host NF can benefit from ASIC
accelerators in the SmartNIC. Clara adopts SVM [73] to
identify such code blocks.

• Cross-platform Prediction (Clara-CP). Clara trains an
LSTM network [9] to predict the number of compute and
memory instructions that a NF can be compiled to.

We employ the PrAM model to replace all the three ML models
in Clara, as it has better accuracy than PrDT. To analyze the
effectiveness of transparent model adjustment in PRIMO, we
also evaluate the model performance with post adjustment
(denote as PRIMO+). We compare PRIMO with the original
models in Clara (LSTM, GBDT and SVM), as well as some al-
ternative baseline algorithms (CNN, DT, TPOT [64] (namely
AutoML), K-Nearest Neighbor (kNN)). More details about
Clara and our implementation can be found in Appendix D.2.

5.1 System Interpretation
As shown in Figure 8, PRIMO provides comprehensive inter-
pretation for the Clara-MS task, including global and local

526 2022 USENIX Annual Technical Conference USENIX Association

aggcounter anonipaddr forcetcp tcp_gen tcpack tcpresp timefilter udpipencap Average
0

20

40

W
M

AP
E

(%
)

Primo Clara DNN AutoML CNN

Figure 11: Weighted mean-absolute percentage error (WMAPE) over 8 types of NFs in Clara-CP.

interpretation, as well as transparent shape functions. We list
the notation descriptions in Appendix D.2. From the left fig-
ure, we find Ri, Rres and Ric are the most important features
that contribute most to model prediction. Developers should
pay more attention to shape function optimizations for these
features. We also notice the impact of feature interactions is
relatively less important, indicating that we can reduce their
priority in model optimization. The middle figure presents the
interpretation of the individual prediction for UDPCount NF.
The final prediction equals the sum of every feature score and
the intercept constant (Equation 1). Through the local inter-
pretation, developers can clearly check the model behavior for
each prediction to make the corresponding adjustment. More-
over, the right figure (blue line) illustrates the learned shape
function for Rec, which allows developers to dive deeper into
fine-grained model adjustment (such as the orange line).

5.2 Performance Analysis
Since Clara is an offline system, for each task, we mainly
evaluate the model accuracy rather than the inference cost.

Clara-MS. As shown in Figure 9 (left), our interpretable
model in PRIMO achieves similar accuracy as the GBDT
(XGBoost [17]) model in Clara, and outperforms other ML
models over the synthesized test dataset. Figure 9 (right) fur-
ther presents the accuracy of PRIMO for 4 real NFs. Compared
to Clara, PRIMO achieves 1.4× less prediction errors and at
most 5% error to the optimal configurations.

Clara-AI. In Figure 10, PRIMO achieves the equivalent pre-
cision and recall rates as the SVM model in Clara, and beats
other ML algorithms. Through successfully identifying CRC-
based NFs, PRIMO could improve peak throughput by 1.6×
and decrease latency by 25% [66].

Clara-CP. Clara uses the LSTM model to predict the number
of instructions for unported codes. Figure 11 shows the accu-
racy of the Clara-CP task over 8 representative real NFs and
the Average column represents the WMAPE results across
all the NFs. We observe PRIMO (14.4%) delivers better perfor-
mance than Clara (15.1%). This demonstrates the capability
of PRIMO to cope with complex program embeddings.

5.3 Model Adjustment
To overcome the training data insufficiency issue, Clara uses
YarpGen [45] to generate synthesized programs. This in-
evitably introduces certain data distribution drifts from the

yes

···

···

300 750 1200 1850 2850 4300

Bitrate Selection (kbps)

···

·········

no

yes no yes no

yes no

no

yes no yes no

yes no

yes no

noyes yesyes no

Pensieve
Actor Network

······
Distill
Engine

Primo

Figure 12: Visualization of the interpretable model distilled
from the Pensieve policy. For simplicity, we only present the
top 5 layers, and the ellipsis indicates subsequent nodes.

actual scenario. Specifically, there exist instruction distribu-
tion differences (0.0303 of Jensen-Shannon divergence and
0.0354 of Bhattacharyya distance) between real-world and
synthesized click programs [66]. Such drifts could compro-
mise the model performance. The transparency of the PRIMO
model allows developers to discover and fix undesirable be-
haviors caused by the synthesized data. In addition, PRIMO
designs two post-processing tools to help developers adjust
the models based on their domain knowledge:

Monotonic Constraint. As introduced in §3.4.1, developers
can leverage PRIMO to generate a new shape function with
monotonic constraint and rectify the incorrect behaviors of
the models automatically. For instance, in Figure 8 (right),
the developers know the desired number of cores should
be proportional to the memory/compute intensity, i.e., Rec
(EMEM/Compute Ratio). Then they can replace the original
shape function (blue line) with the monotonic shape function
(orange line). They can check each shape function and decide
whether it is necessary to apply such adjustment based on
their prior knowledge. To evaluate the effectiveness of this
strategy, we apply the Monotonic Constraint tool to two shape
functions (Ai & Rec) and yield the adjusted model PRIMO+.
As shown in Figures 9, PRIMO+ achieves better prediction
accuracy. This shows the monotonicity of the PRIMO model
can be achieved via simple post-processing and appropriate
adjustment can bring better performance.

USENIX Association 2022 USENIX Annual Technical Conference 527

0 1 2
Average QoE

0

25

50

75

100

Fr
ac

tio
n

(%
)

Primo
Pensieve
Metis
MPC
BOLA
BB

Prim
o

Pensieve
Metis MPC

BOLA BB
0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Q
oE

0.948
0.934

0.889
0.860

0.787

0.639

(a) Norway HSDPA

0 1 2 3
Average QoE

0

25

50

75

100

Fr
ac

tio
n

(%
)

Primo
Pensieve
Metis
MPC
BOLA
BB

Prim
o

Pensieve
Metis MPC

BOLA BB
0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Q
oE

0.955

0.776
0.746

0.949

0.806

0.672

(b) FCC Broadband

Figure 13: Overall performance of PRIMO compared with other methods on the Norway HSDPA and FCC Broadband traces.

0 20 40 60 80 100 120 140 160 180
Time (s)

300
750

1200

1850

2850

4300

Bi
tr

at
e

Se
le

ct
io

n
(k

bp
s)

Primo: 1.545
Pensieve: 1.451

Metis: 1.527
MPC: 0.907

BB: 1.194

Figure 14: Profiling the bitrate selections of ABR algorithms
over one typical Norway HSDPA trace. Legend presents the
average QoE of each algorithm.

Counterfactual Explanation. This tool aims to provide sim-
ple and intuitive explanations for model troubleshooting.
More concretely, it helps developers to understand why this
prediction is wrong and how to adjust the model to fix it. We
use Clara-AI as an example to describe its usage and evalua-
tion. Clara employs Sequential Pattern Extraction (SPE) [21]
to extract code features as boolean sequences (each contain-
ing 102 features) to indicate whether the NF program contains
code blocks for acceleration. Our PRIMO model allocates a
contribution score for each feature. To fix False Negative (FN)
predictions, we utilize this tool to find the closest k instances
from the data set with the opposite label. Through the com-
parison of these instances, we can easily discover the feature
with inadvisable learned scores and adjust the score. In this
case, we increase the contribution weight of the 84th feature
appropriately. We can also perform transparent debugging
for False Positive (FP) predictions similarly. In Figure 10,
PRIMO+ further enhances the F1 score from 89.6% to 92.5%.

6 Case Study 3: Pensieve
Our third case study is Pensieve [51], a system that uses RL for
online video streaming. It learns the adaptive bitrate (ABR)
algorithms automatically to optimize the user quality of expe-
rience (QoE) defined in Equation 4 in Appendix D.3.

We obtain an interpretable PrDT model through distilling
from the original RL actor model. Then we implement the
PrDT model into the ABRController of dash.js [2]. More de-
tails can be found in Appendix D.3. For baselines, we compare
PRIMO with the following algorithms: (1) The RL model in
Pensieve. (2) Buffer-Based(BB) [33]: selecting bitrates with
the goal of keeping the buffer occupancy above 5 seconds.

Model Scale
102

103

104

105

69

547

111622
Primo
Metis
Pensieve

Inference Latency (ms)

100

101

0.24
0.35

19.03

Training Time (s)

103

104

226

4812

14400

Figure 15: Comparing three learning-based ABR methods.

(3) BOLA [78]: selecting bitrates with Lyapunov optimiza-
tion on buffer occupancy observations. (4) MPC [87]: select-
ing bitrates with a control-theoretic model. We evaluate ro-
bustMPC variant which can better handle errors in throughput
prediction. (5) Metis [55]: using a decision tree to explain the
Pensieve RL model, which represents the handcrafted DT ap-
proach. Evaluations are performed on the simulator provided
by Pensieve, except the deployment experiment (latency).

6.1 System Interpretation
Figure 12 illustrates the learning process with the Distill En-
gine, as well as the decision making process of the inter-
pretable policy. Related notations are described in Appendix
D.3. This DT contains 8 layers and 35 leaves in total, which
is compact and simple enough for developers to understand
its complete operation logic.

Similar to the PRIMO model in LinnOS (Figure 3), the first
2 layers divide decision flows based on the feature L (Last
chunk bitrate) which is in line with our perception. In the
third layer, PRIMO proceeds to classify environment states
(inputs) according to the feature B (Current buffer size). These
observations indicate both L and B are the key features that
affect the final bitrate decision, inspiring developers to pay
more attention to them when designing ABR algorithms.

6.2 Performance Analysis

Overall performance. Since the ABR algorithm could en-
counter unprecedented network conditions by different clients,
it is important to evaluate its generalization ability. So in ad-
dition to the Norway HSDPA trace used for model training,
we also evaluate another trace FCC Broadband that is never
applied for training. Figure 13 presents the QoE distribution
and average QoE of each method on the two traces. For Nor-

528 2022 USENIX Annual Technical Conference USENIX Association

0.1 1 10 100
LinnOS Data Fraction (%)

0

25

50

75

100

Pe
rf

or
m

ac
e

(%
)

Primo(PrDT)
Primo(PrAM)
LinnOS(NN)

0.1 1 10 100
Clara Data Fraction (%)

0

25

50

75

100
Primo(PrDT)
Primo(PrAM)
Clara(LSTM)

Figure 16: Model performance with less training data. (Left):
Recall rate in LinnOS (the higher the better). (Right):
WMAPE in Clara-CP (the lower the better).

way HSDPA, the CDF curve of PRIMO almost overlaps with
Pensieve’s curve, and the average QoE is even 1.5% higher
than Pensieve. This demonstrates PRIMO has successfully
learned the Pensieve policy with a simple decision tree and
outperforms other ABR algorithms. Furthermore, for FCC
Broadband, PRIMO presents better generalization than other
two learning-based algorithms. Such advantages are attributed
to the adaptive pruning strategy in Bayes Optimization, and
the imitation process in the Distill Engine. In contrast, al-
though Metis also uses a decision tree to get a surrogate
model from Pensieve, it has some performance degradation
as its inflexible pruning strategy.

Example analysis. Figure 14 profiles the bitrate selection
actions of different ABR algorithms over a single network
trace. We find two heuristic algorithms (BB and MPC) keep
fluctuating during the video streaming, which could cause
a terrible user experience. The other three learning-based
algorithms have more stable decisions. Pensieve decides to
decrease the bitrate at 120s and Metis chooses to reduce
the video resolution at 170s. This can cause an unsmooth
experience (as the penalty term in Equation 4) even though
they adjust back the bitrate quickly. In contrast, PRIMO gives
a much more smooth experience.

Training and inference overhead. The PRIMO model is
more compact and simpler. Figure 15 (left) compares the
model complexity3 of different methods. We observe that
PRIMO reduces the model scale by 1617× compared to the
original Pensieve actor model. Even for Metis which also
uses a decision tree, PRIMO can reduce the tree complexity by
7.9×. For inference, PRIMO only needs to perform 3~7 con-
dition tests to make a bitrate decision. It can reduce 70× and
1.5× inference latency compared with Pensieve and Metis
respectively, as shown in Figure 15 (middle). To generate
a model, in Figure 15 (right), PRIMO only needs less than
4 minutes for model distillation, which is 21.3× faster than
Metis (under the same setting). Compare with Pensieve 4
hours training time, less than 4 minutes distill time is ignor-
able. In summary, PRIMO can greatly reduce overall operating
costs in the video streaming scenario.

3Model complexity refers to the number of parameters for Pensieve model,
or number of nodes for PRIMO and Metis.

Task DL Model Origin PRIMO Improvement

LinnOS 3 × DNN (50 epoch) 564s 5s 112.8×
Clara-CP LSTM (30 epoch) 1,081s 79s 13.7×

Table 3: Training time comparison with original DL models.

Task Metric PRIMO w/o BO PRIMO w/ BO Improvement

LinnOS F1 Score 0.8089 0.8518 5.3%
Clara-CP WMAPE 0.1728 0.1442 16.6%
Clara-MS MAE 1.0155 0.8660 14.7%

Table 4: Ablation study for Bayes Optimization.

7 More Evaluation
We run some experiments to further evaluate the benefits of
PRIMO more comprehensively.

Requiring less training data. Due to the simpler model
structure and fewer parameters, PRIMO can have better per-
formance in some scenarios without enough training data
like Clara. In Figure 16, we compare the performance of two
PRIMO models with the original DL models in LinnOS and
Clara-CP using less training data. We use a smaller dataset
(10%) in LinnOS as the baseline. Because LinnOS provides
abundant data for DNN model training, 10% of original data
can provide equivalent performance. It is clear that PRIMO
models maintain better performance with limited training data,
especially for the PrDT model. Conversely, the original DL
models only work with abundant data. This shows PRIMO has
broader applicability for various scenarios.

Short training time. Table 3 presents the training time of
PRIMO and original DL models in LinnOS and Clara-CP,
which adopt the default numbers of training epochs in their
papers. PRIMO is able to reduce 2-3 orders of magnitude of
training time. Even considering the hyperparameter search
process, the significant time conservation could maintain since
multiple trails can be executed concurrently. Note that GPUs
can only provide very limited acceleration (<1.2×) for these
two DL models. Additionally, LinnOS requires training a
DNN model for each SSD and the prototype only considers
three SSDs. In a production-level distributed storage system
with thousands of SSDs, LinnOS could have a severe scala-
bility issue. In contrast, PRIMO remarkably saves the training
cost, making the deployment more feasible in practice.

Impact of BO. We further perform an ablation study on
Bayes Optimization in PRIMO. Table 4 summaries the perfor-
mance of the PRIMO model with and without BO in LinnOS
and Clara. We observe 5.3%~16.6% accuracy improvement
brought by BO. Besides, BO typically simplifies the model
scale while obtaining better performance. For LinnOS, BO
reduces over 15× tree nodes compared with PRIMO without
BO. This verifies the importance of the BO component in
making interpretable models more practical. For search time
aspect, BO obtains over 1.2× acceleration compared with
naive random search algorithm in Clara-MS task by reducing
search trails to reach equivalent performance.

USENIX Association 2022 USENIX Annual Technical Conference 529

8 Discussion
Is the interpretation always correct? Yes. PRIMO pro-
vides the interpretation correctness guarantee for each gen-
erated model and each prediction. Existing interpretation
tools [39, 48, 67] aim to offer explanations for understanding
black-box models, whereas the generated interpretations are
sometimes contradictory or even mislead users. In contrast,
PRIMO models are inherently interpretable and developers
can totally trust the interpretation.
Can PRIMO be applied to all systems? PRIMO has its lim-
itations in some system scenarios. For instance, it does not
yet support unsupervised learning scenarios (e.g., anomaly
detection in security applications [16]). It cannot outperform
black-box models in systems with extremely complex fea-
tures, e.g., images, speeches. These will be our future work.
Is the post-processing step necessary? These operations are
optional because the trained models without post-processing
usually have excellent performance. In order to take full ad-
vantage of the interpretable models, the post-processing tools
help developers leverage their expertise and domain knowl-
edge to further optimize system performance. In a black-box
model, it is hard to perform such optimization.
Can PRIMO work on a larger model? Yes. We have demon-
strated PRIMO can outperform DNN models in various sce-
narios, including LinnOS (MLP with 8× 103 parameters),
Clara-CP (LSTM+FC with 4×104 parameters) and Pensieve
(CNN+MLP with 1×105 parameters). They represent most
model scale of learning augmented systems listed in [1]. For
larger models, we evaluate Habitat [88] as an example. It lever-
ages 8-layer MLP models, containing over 8×106 parameters,
to prediction DL operation execution time on heterogeneous
GPUs. PRIMO can provide comparable prediction accuracy
as Habitat across conv2d, linear, lstm and bmm operations.
How to interpret high-dimensional data? Admittedly,
when handling high-dimensional datasets, PRIMO models
may become more complicated for users to understand the
whole model. However, PRIMO provides ordered feature im-
portance for interpretation. Generally, users can focus on the
top several tree layers of PrDT or several significant shape
functions according to the global interpretation of PrAM.
Future work. There are four possible directions as our fu-
ture work. (1) We can extend PRIMO to support learning-
augmented systems with unsupervised learning. (2) To obtain
a more accurate interpretable model, we can optimize the
model training algorithm. Currently, we use CART [14], the
most popular and widely applied approach, for decision tree
learning in PrDT. This is based on the heuristic greedy algo-
rithm where locally optimal decisions are made in each node.
In the future, we plan to employ novel decision tree training al-
gorithms (e.g., GOSDT [44], based on dynamic programming
method) to solve the sub-optimal problem. (3) For practical
deployment, comprehensive programming language support
is needed because different systems have their own coding

requirements. PrDT has a tool for converting Python-based
models to other formats. But PrAM only supports the conver-
sion to the ONNX [4] format currently. We aim to provide
more model format conversion in the future. (4) Integration
with existing RL-based system development frameworks (e.g.,
Park [50]) to facilitate more practical system deployment.

9 Related Work
Interpretability of learning-augmented systems. To our
best knowledge, there is no prior work that develops a unified
framework for providing inherent interpretability for systems
like PRIMO. Besides, interpretability is often overlooked dur-
ing the development of learning-augmented systems, and only
a few works consider it. Bao [53] is a learning-based sys-
tem that adopts TreeCNN [60] for query optimization and
the decision process can be inspected by developers. Tang
et al. [79] proposed an interpretable method that extracts a
Finite State Machine from a RL policy for storage resource
allocation in Huawei. Grüner et al. [25] generated concise
and interpretable rule-sets for unknown proprietary streaming
algorithms (e.g. ABR approaches in Youtube, Twitch), which
is similar to the Pensieve case study with PRIMO (§6).

Some efforts were also made on building tools for inter-
preting black-box models [26, 27, 55], as discussed in §2.3.1.
Different from these methods, PRIMO does not seek for in-
terpreting black-box models but directly building transparent
models, with higher fidelity and efficiency.
Machine learning and system co-design. It is non-trivial
to apply ML techniques for system design and deployment
in practice. Autosys [42] introduces a framework to address
common design considerations (e.g., learning-induced sys-
tem failures, extensibility), and reported years of experiences
in designing and operating learning-augmented systems at
Microsoft. WhiRL [19] facilitates the safe deployment of
RL-based systems through verifying whether the learned pol-
icy meets the designer’s requirements. Some components in
PRIMO are inspired from these works.

10 Conclusion
This work introduces PRIMO, a unified framework that assists
developers to design practical learning-augmented systems
with interpretable models. For different scenarios, PRIMO
provides respective models and optimization solutions to
meet the system requirements. Based on our case studies,
we demonstrate that PRIMO can achieve transparent, accurate
and lightweight system deployment in practice.

Acknowledgments
We thank the anonymous reviewers and our shepherd for their
valuable comments and suggestions. This study is supported
under the RIE2020 Industry Alignment Fund–Industry Col-
laboration Projects (IAF-ICP) Funding Initiative, as well as
cash and in-kind contributions from the industry partner(s).

530 2022 USENIX Annual Technical Conference USENIX Association

References
[1] Awesome-ml-for-system. https://github.com/S-L

ab-System-Group/Awesome-ML-for-System, 2022.

[2] Dash.js: Javascript player. https://github.com/Das
h-Industry-Forum/dash.js, 2022.

[3] Federal communications commission. https://www.
fcc.gov/reports-research/reports/measuring
-broadband-america, 2022.

[4] Onnx: Open neural network exchange. https://gith
ub.com/onnx/onnx, 2022.

[5] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura,
and Ricardo Bianchini. Providing slos for resource-
harvesting vms in cloud platforms. OSDI ’20.

[6] Miriam Ayer, H. D. Brunk, G. M. Ewing, W. T. Reid, and
Edward Silverman. An empirical distribution function
for sampling with incomplete information. The Annals
of Mathematical Statistics, 1955.

[7] Jimmy Ba and Rich Caruana. Do deep nets really need
to be deep? NeurIPS ’14.

[8] Riyadh Baghdadi, Massinissa Merouani, Mohamed-
Hicham Leghettas, Kamel Abdous, Taha Arbaoui,
Karima Benatchba, and Saman Amarasinghe. A deep
learning based cost model for automatic code optimiza-
tion. MLSys ’21.

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. ICLR ’15.

[10] Erick Carvajal Barboza, Sara Jacob, Mahesh Ketkar,
Michael Kishinevsky, Paul Gratz, and Jiang Hu. Au-
tomatic microprocessor performance bug detection.
HPCA ’21.

[11] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama.
Verifiable reinforcement learning via policy extraction.
NeurIPS ’18.

[12] Shane Bergsma, Timothy Zeyl, Arik Senderovich, and
J. Christopher Beck. Generating complex, realistic cloud
workloads using recurrent neural networks. SOSP ’21.

[13] James Bergstra and Yoshua Bengio. Random search
for hyper-parameter optimization. Journal of Machine
Learning Research, 2012.

[14] Leo Breiman, Jerome H Friedman, Richard A Olshen,
and Charles J Stone. Classification and regression trees.
1984.

[15] Nilotpal Chakravarti. Isotonic median regression: A lin-
ear programming approach. Mathematics of Operations
Research, 1989.

[16] Varun Chandola, Arindam Banerjee, and Vipin Kumar.
Anomaly detection: A survey. ACM Computing Surveys,
2009.

[17] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable
tree boosting system. KDD ’16.

[18] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of cloudlab. USENIX ATC ’19.

[19] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael
Schapira. Verifying learning-augmented systems. SIG-
COMM ’21.

[20] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB:
Robust and efficient hyperparameter optimization at
scale. ICML ’18.

[21] Yujie Fan, Yanfang Ye, and Lifei Chen. Malicious se-
quential pattern mining for automatic malware detection.
Expert Systems with Applications, 2016.

[22] Keinosuke Fukunaga and Patrenahalli M. Narendra. A
branch and bound algorithms for computing k-nearest
neighbors. IEEE Transactions on Computers, 1975.

[23] Yuanxiang Gao, Li Chen, and Baochun Li. Spotlight:
Optimizing device placement for training deep neural
networks. ICML ’18.

[24] Liangyi Gong, Zhenhua Li, Feng Qian, Zifan Zhang,
Qi Alfred Chen, Zhiyun Qian, Hao Lin, and Yunhao Liu.
Experiences of landing machine learning onto market-
scale mobile malware detection. EuroSys ’20.

[25] Maximilian Grüner, Melissa Licciardello, and Ankit
Singla. Reconstructing proprietary video streaming al-
gorithms. USENIX ATC ’20.

[26] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang
Wang, and Xinyu Xing. Lemna: Explaining deep learn-
ing based security applications. CCS ’18.

[27] Dongqi Han, Zhiliang Wang, Wenqi Chen, Ying Zhong,
Su Wang, Han Zhang, Jiahai Yang, Xingang Shi, and Xia
Yin. Deepaid: Interpreting and improving deep learning-
based anomaly detection in security applications. CCS
’21.

USENIX Association 2022 USENIX Annual Technical Conference 531

https://github.com/S-Lab-System-Group/Awesome-ML-for-System
https://github.com/S-Lab-System-Group/Awesome-ML-for-System
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
https://www.fcc.gov/reports-research/reports/measuring-broadband-america
https://www.fcc.gov/reports-research/reports/measuring-broadband-america
https://www.fcc.gov/reports-research/reports/measuring-broadband-america
https://github.com/onnx/onnx
https://github.com/onnx/onnx

[28] Xueyuan Han, Xiao Yu, Thomas Pasquier, Ding Li,
Junghwan Rhee, James Mickens, Margo Seltzer, and
Haifeng Chen. SIGL: Securing software installations
through deep graph learning. USENIX Security ’21.

[29] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Ed-
berg Halim, Henry Hoffmann, and Haryadi S. Gunawi.
Linnos: Predictability on unpredictable flash storage
with a light neural network. OSDI ’20.

[30] Trevor Hastie and Robert Tibshirani. Generalized addi-
tive models: Some applications. Journal of the American
Statistical Association, 1987.

[31] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling
the knowledge in a neural network. CoRR, 2015.

[32] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen,
and Tianwei Zhang. Characterization and prediction of
deep learning workloads in large-scale gpu datacenters.
SC ’21.

[33] Te-Yuan Huang, Ramesh Johari, Nick McKeown,
Matthew Trunnell, and Mark Watson. A buffer-based
approach to rate adaptation: evidence from a large video
streaming service. SIGCOMM ’14.

[34] Sarthak Jain and Byron C. Wallace. Attention is not
explanation. NAACL ’19.

[35] José Jiménez-Luna, Francesca Grisoni, and Gisbert
Schneider. Drug discovery with explainable artificial
intelligence. Nature Machine Intelligence, 2020.

[36] Michael I. Jordan and Robert A. Jacobs. Hierarchical
mixtures of experts and the em algorithm. IJCNN ’93.

[37] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision
tree. NeurIPS ’17.

[38] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau,
Paul Ruth, Dan Stanzione, Mert Cevik, Jacob Colleran,
Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbah, Alex Rocha, and
Joe Stubbs. Lessons learned from the chameleon testbed.
USENIX ATC ’20.

[39] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Ed-
ward Wang, Bilal Alsallakh, Jonathan Reynolds, Alexan-
der Melnikov, Natalia Kliushkina, Carlos Araya, Siqi
Yan, and Orion Reblitz-Richardson. Captum: A unified
and generic model interpretability library for pytorch.
CoRR, 2020.

[40] Mikel Landajuela, Brenden K Petersen, Sookyung Kim,
Claudio P Santiago, Ruben Glatt, Nathan Mundhenk,

Jacob F Pettit, and Daniel Faissol. Discovering symbolic
policies with deep reinforcement learning. ICML ’21.

[41] Xu Li, Feilong Tang, Jiacheng Liu, Laurence T. Yang,
Luoyi Fu, and Long Chen. AUTO: Adaptive congestion
control based on multi-objective reinforcement learning
for the satellite-ground integrated network. USENIX
ATC ’21.

[42] Chieh-Jan Mike Liang, Hui Xue, Mao Yang, Lidong
Zhou, Lifei Zhu, Zhao Lucis Li, Zibo Wang, Qi Chen,
Quanlu Zhang, Chuanjie Liu, and Wenjun Dai. Autosys:
The design and operation of learning-augmented sys-
tems. USENIX ATC ’20.

[43] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang,
Huawei Li, and Xiaowei Li. Cognitive SSD: A deep
learning engine for in-storage data retrieval. USENIX
ATC ’19.

[44] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin,
and Margo Seltzer. Generalized and scalable optimal
sparse decision trees. ICML ’20.

[45] Vsevolod Livinskii, Dmitry Babokin, and John Regehr.
Random testing for c and c++ compilers with yarpgen.
Proceedings of the ACM on Programming Languages,
2020.

[46] Yin Lou, Rich Caruana, and Johannes Gehrke. Intel-
ligible models for classification and regression. KDD
’12.

[47] Yin Lou, Rich Caruana, Johannes Gehrke, and Giles
Hooker. Accurate intelligible models with pairwise
interactions. KDD ’13.

[48] Scott M Lundberg and Su-In Lee. A unified approach
to interpreting model predictions. NeurIPS ’17.

[49] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong,
Dusit Niyato, Ping Wang, Ying-Chang Liang, and
Dong In Kim. Applications of deep reinforcement learn-
ing in communications and networking: A survey. IEEE
Communications Surveys Tutorials, 2019.

[50] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Han-
rui Wang, Jiacheng Yang, Haonan Wang, Ryan Marcus,
Ravichandra Addanki, Mehrdad Khani Shirkoohi, Song-
tao He, Vikram Nathan, Frank Cangialosi, Shaileshh Bo-
jja Venkatakrishnan, Wei-Hung Weng, Song Han, Tim
Kraska, and Mohammad Alizadeh. Park: An open
platform for learning-augmented computer systems.
NeurIPS ’19.

[51] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. SIG-
COMM ’17.

532 2022 USENIX Annual Technical Conference USENIX Association

[52] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Alizadeh.
Learning scheduling algorithms for data processing clus-
ters. SIGCOMM ’19.

[53] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime
Tatbul, Mohammad Alizadeh, and Tim Kraska. Bao:
Making learned query optimization practical. SIGMOD
’21.

[54] Zili Meng, Yaning Guo, Yixin Shen, Jing Chen, Chao
Zhou, Minhu Wang, Jia Zhang, Mingwei Xu, Chen Sun,
and Hongxin Hu. Practically deploying heavyweight
adaptive bitrate algorithms with teacher-student learning.
IEEE/ACM Transactions on Networking, 2021.

[55] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu,
Hongzi Mao, and Hongxin Hu. Interpreting deep
learning-based networking systems. SIGCOMM ’20.

[56] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit
Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar,
Mohammad Norouzi, Samy Bengio, and Jeff Dean. De-
vice placement optimization with reinforcement learn-
ing. ICML’17.

[57] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. ICML ’16.

[58] Christoph Molnar. Interpretable Machine Learning.
2019.

[59] Shanka Subhra Mondal, Nikhil Sheoran, and Subrata
Mitra. Scheduling of time-varying workloads using
reinforcement learning. AAAI ’21.

[60] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin.
Convolutional neural networks over tree structures for
programming language processing. AAAI ’16.

[61] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang,
Lucien Ngale, Stéphane Pouget, Josiane Kouam, Renaud
Lachaize, Jinho Hwang, Tim Wood, Daniel Hagimont,
Noël De Palma, Bernabé Batchakui, and Alain Tchana.
Ofc: An opportunistic caching system for faas platforms.
EuroSys ’21.

[62] Harsha Nori, Rich Caruana, Zhiqi Bu, Judy Hanwen
Shen, and Janardhan Kulkarni. Accuracy, interpretabil-
ity, and differential privacy via explainable boosting.
ICML ’21.

[63] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caru-
ana. Interpretml: A unified framework for machine
learning interpretability. CoRR, 2019.

[64] Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz,
and Jason H. Moore. Evaluation of a tree-based pipeline
optimization tool for automating data science. GECCO
’16.

[65] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbig-
niew T. Kalbarczyk, and Ravishankar K. Iyer. FIRM:
An intelligent fine-grained resource management frame-
work for slo-oriented microservices. OSDI ’20.

[66] Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang,
Ming Liu, Srinivas Narayana, and Ang Chen. Auto-
mated smartnic offloading insights for network func-
tions. SOSP ’21.

[67] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. "why should i trust you?": Explaining the
predictions of any classifier. KDD ’16.

[68] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and
Pål Halvorsen. Commute path bandwidth traces from
3g networks: analysis and applications. MMSys ’13.

[69] Aaron M. Roth, Nicholay Topin, Pooyan Jamshidi, and
Manuela Veloso. Conservative q-improvement: Rein-
forcement learning for an interpretable decision-tree
policy. CoRR, 2019.

[70] Cynthia Rudin. Stop explaining black box machine
learning models for high stakes decisions and use inter-
pretable models instead. Nature Machine Intelligence,
2019.

[71] Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang
Huang, Lesia Semenova, and Chudi Zhong. Inter-
pretable machine learning: Fundamental principles and
10 grand challenges. CoRR, 2021.

[72] Cynthia Rudin and Berk Ustun. Optimized scoring
systems: Toward trust in machine learning for healthcare
and criminal justice. INFORMS Journal on Applied
Analytics, 2018.

[73] Bernhard Schölkopf, Alex J. Smola, Robert C.
Williamson, and Peter L. Bartlett. New Support Vector
Algorithms. Neural Computation, 2000.

[74] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi.
Recognizing functions in binaries with neural networks.
USENIX Security ’15.

[75] Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan
Jimenez, and Sung-Hyun Son. Optimization methods
for interpretable differentiable decision trees applied to
reinforcement learning. AISTATS ’20.

[76] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
Practical bayesian optimization of machine learning al-
gorithms. NeurIPS ’12.

USENIX Association 2022 USENIX Annual Technical Conference 533

[77] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd.
Learning relaxed belady for content distribution network
caching. NSDI ’20.

[78] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitara-
man. Bola: Near-optimal bitrate adaptation for online
videos. INFOCOM ’16.

[79] Yingtian Tang, Han Lu, Xijun Li, Lei Chen, Mingxuan
Yuan, and Jia Zeng. Learning-aided heuristics design
for storage system. SIGMOD ’21.

[80] Arnaud Van Looveren and Janis Klaise. Inter-
pretable counterfactual explanations guided by proto-
types. ECML-PKDD ’21.

[81] Jiachen Wang, Ding Ding, Huan Wang, Conrad Chris-
tensen, Zhaoguo Wang, Haibo Chen, and Jinyang Li.
Polyjuice: High-performance transactions via learned
concurrency control. OSDI ’21.

[82] Xingda Wei, Rong Chen, and Haibo Chen. Fast rdma-
based ordered key-value store using remote learned
cache. OSDI ’20.

[83] Sarah Wiegreffe and Yuval Pinter. Attention is not not
explanation. EMNLP ’19.

[84] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and
Yoshua Bengio. Show, attend and tell: Neural image
caption generation with visual attention. ICML ’15.

[85] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang,
Qingwei Lin, Yingnong Dang, Peng Li, Keceng Jiang,
Wenchi Zhang, Jian-Guang Lou, Murali Chintalapati,
and Dongmei Zhang. Improving service availability of
cloud systems by predicting disk error. USENIX ATC
’18.

[86] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E.
Gonzalez, Burton Smith, and Randy H. Katz. Selecting
the best vm across multiple public clouds: A data-driven
performance modeling approach. SoCC ’17.

[87] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno
Sinopoli. A control-theoretic approach for dynamic
adaptive video streaming over http. SIGCOMM ’15.

[88] Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gennady
Pekhimenko. Habitat: A runtime-based computational
performance predictor for deep neural network training.
USENIX ATC ’21.

[89] Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao,
and Bing Xie. Rlscheduler: An automated hpc batch job
scheduler using reinforcement learning. SC ’20.

[90] Ji Zhang, Ping Huang, Ke Zhou, Ming Xie, and Sebas-
tian Schelter. Hddse: Enabling high-dimensional disk
state embedding for generic failure detection system
of heterogeneous disks in large data centers. USENIX
ATC ’20.

[91] Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji,
Xiapu Luo, and Ting Wang. Interpretable deep learning
under fire. USENIX Security ’20.

[92] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Ed-
ward Suh, and Christina Delimitrou. Sinan: Ml-based
and qos-aware resource management for cloud microser-
vices. ASPLOS ’21.

[93] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: Generating high-performance tensor
programs for deep learning. OSDI ’20.

[94] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule ex-
ploration and optimization framework for tensor com-
putation on heterogeneous system. ASPLOS ’20.

[95] Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja, Yuan-
dong Tian, Ying Zhang, and Xin Jin. Network planning
with deep reinforcement learning. SIGCOMM ’21.

[96] Kostas Zoumpatianos, Yin Lou, Ioana Ileana, Themis
Palpanas, and Johannes Gehrke. Generating data series
query workloads. The VLDB Journal, 2018.

534 2022 USENIX Annual Technical Conference USENIX Association

A Supplementary Elaborations
In this section, we provide some supplementary elaborations
about PRIMO algorithms, including algorithm detailed illus-
trations of PrAM and PrDT.

A.1 PrAM: Explainable Boosting Machine
Explainable Boosting Machine (EBM) [63] is a open-source
implementation of Generalized Additive Models plus Inter-
actions (GA2M) [47] written in C++ and Python. Similar to
popular GBDT algorithms (e.g. LightGBM [37]), the EBM
training procedure begins by bucketing data from continu-
ous features into discrete bins of histogram [62], which can
significantly accelerate model training. Then EBM starts to
learn shape function fi(·) for each feature. Common choices
for shape functions are regression splines, step functions and
binary trees. For better prediction accuracy, it chooses the
boosted trees, where each successive tree tries to predict the
overall residual from all the preceding trees [46]. Further-
more, EBM optimizes the traditional boosting (greedy search)
approach by leveraging cyclic gradient boosting, which learns
a shallow tree for each feature in a round-robin fashion [62].
PrAM is heavily based on the implementation of EBM.

For simplicity and accuracy, PrAM leverages BO to automat-
ically adjust model configurations, including the number of
histogram bins, the number of considered interactions, learn-
ing rate, etc. It helps developers easily obtain the optimal
model which is compact and accurate.

A.2 PrDT: Minimal Cost-Complexity Pruning
We adopt Minimal Cost-Complexity Pruning (CCP) [14] to
prune the full tree in the post-processing stage. This algorithm
aims to minimize a cost-complexity metric Rα(T) which is
defined as

Rα(T) = R(T)+α ·N(T) (3)

where R(T) and N(T) denote the misclassification cost (error
rate) and complexity penalty (the number of leaves) of the
decision tree T respectively. The trade-off between accuracy
and sparsity of the tree is controlled by the complexity param-
eter α: as α increases, more leaves are pruned and the total
impurity increases.

Figure 17 presents the impact of the complexity parameter
α on the model performance and complexity for the LinnOS
system (§4). When α is too small (before the red dashed line),
PrDT has poor performance because of the severe overfitting.
With a bigger α, developers could trade-off the model accu-
racy and complexity based on their system requirements. The
optimal pruning factor can differ by many orders of magnitude
for different systems according to our experiments. It is hard
for system developers to identify an appropriate value of α

intuitively. To address this, PRIMO adopts bayes optimization
to perform post pruning automatically (§3.3.1).

1e-06 1e-05 0.0001 0.001 0.01
α

75

80

85

90

95

100

F1
 S

co
re

 (%
)

Overfitting

F1 Score (Train)
F1 Score (Test)
Tree Depth

0

8

16

24

32

40

Tr
ee

 D
ep

th

Figure 17: Performance (F1 Score) and complexity (Tree
Depth) of the PrDT model under different α in LinnOS.

B Insufficiency of Existing Methods
To demonstrate the argument in §2.3, we provide some ex-
amples and perform analysis. These experiments reveal the
insufficiency of both existing machine learning frameworks
and interpretation tools.

B.1 Contradictory Interpretation
Clara adopts XGBoost to predict the optimal core counts for
different NFs in Clara-MS. XGBoost contains a built-in api
get_score to get the feature importance value of each feature
and it can be regarded as the model interpretation. However,
we argue that the interpretation has low fidelity. As evident
from the Figure 18, interpretations based on different metrics
present contrasting patterns, where both gain and cover are
important intermediate metrics during model generation. For
instance, Rsum is the second important feature according to
cover-based explanation while seems ignorable from gain’s
perspective. This makes developers feel confused which in-
terpretation should trust. More seriously, this could mislead
them to make wrong decisions, such as incorrectly omitting
important input features while feature engineering.

B.2 Incapability for Global Surrogate
We have demonstrated the remarkable performance of PRIMO
in this work. A common question is that If using the existing
interpretation tools for the model surrogate, can they also
deliver equivalent effects? Our answer is no. We evaluate
two popular black-box interpretation methods: Lime [67] and
Lemna [26]. Lime performs local interpretation through lin-
ear regression of data subset and Lemna adopts a mixture
regression model to obtain interpretation in a similar way.
Both of them are designed for local interpretation of several
instances. However, we further explore whether they have
the potential for the global model surrogate. Hence, we train
the Lime and Lemna model on the LinnOS dataset, and com-
pare the performance with PRIMO. As shown in Figure 19,
Lime and Lemna cause much higher (7.3%~9.0%) false sub-
mit rates, which is the most significant metric for the system
performance. As stated in §4, the overhead of failover (false
revoke) is relatively negligible and all three methods perform
well pertaining to this metric. Overall, existing interpretation
tools are insufficient for the global model surrogate.

USENIX Association 2022 USENIX Annual Technical Conference 535

0.00 0.25 0.50 0.75
Gain-based Explanation

Rstate

Ai
Rec

Rsum

Re

Ae
Ic
Ric

Ri

Rres

0.00 0.05 0.10 0.15
Cover-based Explanation

Ae
Rstate

Ai
Ic
Rec

Ric

Ri

Re

Rsum

Rres

Figure 18: Interpretations of XGBoost model for Clara-MS
task based on different metrics. Higher value indicates the
feature is more important.

C Lessons Learned From the Case Studies
In order to draw high level conclusions from the three case
studies discussed in §4, §5 and §6, we list the key observation
of the PRIMO benefits for each system scenario as below. To
summarize, in addition to model transparency, PRIMO pro-
vides higher prediction accuracy, smaller inference overhead
and better model generalization ability. These greatly facili-
tate model deployment in practice.
1. LinnOS

Key Observation 1

The high inference overhead of the DNN model can
hinder its deployment in practice, meanwhile seriously
damaging the effect of system performance improve-
ment. PRIMO successfully overcomes this bottleneck.

2. Clara
Key Observation 2

Instead of using various black-box models for differ-
ent tasks, PRIMO uses a unified interpretable model
achieving equivalent even better accuracy and endows
capability of model adjustment to remedy the problem
caused by drifted synthesis data.

3. Pensive
Key Observation 3

With PRIMO, we obtain an interpretable model that has
better performance and generalization ability than the
RL policy. Moreover, it achieves much less inference
overhead and low distill cost for practical deployment.

D More Details about the Evaluated Systems
D.1 LinnOS
LinnOS infers the SSD speed using a lightweight neural net-
work. The motivation behind LinnOS is that SSD read latency
is unstable because some SSD internal operations (e.g., write-
triggered garbage collection, buffer flushing) are contending
with user read I/Os. In addition, there are the same replicas

Lime Lemna Primo
10

15

20

25

30

35

Fa
ls

e
Su

bm
it

(%
)

28.1
29.8

20.8

Lime Lemna Primo
1.0

1.5

2.0

2.5

Fa
ls

e
Re

vo
ke

 (%
)

2.0 2.0
2.1

Figure 19: Comparison of Primo global surrogate perfor-
mance with Lime and Lemna in the LinnOS scenario.

in other SSDs within the storage array (e.g., flash RAID) and
we can utilize the built-in failover logic to circumvent slow
read I/Os. The overhead of switching the read operation to a
redundant SSD (namely failover) is ignorable compared with
I/O pending time.

Implementation. We implemented PrDT models into the
Linux kernel v5.4.8 (same version with LinnOS) within the
block layer (written in C). We use the same SSD I/O traces
in LinnOS, which were collected from Microsoft Bing Index
servers and have been preprocessed by the authors.

Although the LinnOS workflow files are open-sourced on
the Chameleon Cloud [38], the experiment results are un-
reliable due to the unstable and random SSD I/O accesses
(also argued by the authors). Consequently, we shift our im-
plementation and evaluation on a bare-metal server from
CloudLab [18]. It contains four homogeneous enterprise-level
1.6TB SSDs. One of them serves as the system drive and the
rest three SSDs are used for performance evaluation. Addi-
tionally, due to the rapid development of the SSD technology
in recent years, the Microsoft traces collected in 2016 cannot
give sufficient load pressure for evaluation. So we execute a
constant writing task in the background for each SSD (Lin-
nOS only records read I/Os). According to our numerous
tests, the additional load will not cause fluctuations in the
evaluation results.

For the PrDT interpretation results, PRIMO can provide a
more precise visualized file of the PrDT which covers the
number of samples at each flow and the Gini impurity value
of each node rather than Figure 3.

D.2 Clara
Clara is a system that generates the optimal offloading strate-
gies for NFs in SmartNIC. Since the performance charac-
teristics of offloaded programs are opaque prior to porting
and offloading strategies are difficult to reason about, devel-
opers need to first cross-port NFs to the SmartNIC, perform
workload-specific benchmarks, and then iteratively tune the
ported programs to achieve higher performance. Clara can
analyze a legacy NF in its unported form and suggest porting
strategies for the given NF to achieve higher performance.

Implementation. We follow the author-provided data prepro-
cessing pipeline to deal with synthesized and real traces for
training and evaluation. We conduct Clara evaluation on a

536 2022 USENIX Annual Technical Conference USENIX Association

Notation Description

Ai IMEM Access
Ae EMEM Access
Ic Compute Intensity
Ri IMEM / Overall Intensity Ratio
Re EMEM / Overall Intensity Ratio
Ric IMEM / Compute Ratio
Rec EMEM / Compute Ratio

Rsum (IMEM + EMEM) / Compute Ratio
Rres (IMEM − EMEM) / Compute Ratio

Rstate Non-Stateful / Stateful Compute Ratio

Table 5: Notation descriptions of Clara-MS.

Ubuntu 20.04 server with one Intel Core i9-10900 CPU, 64
GB memory and an NVIDIA RTX 2080Ti GPU. Note that be-
cause it is an offline system and we focus on model accuracy,
Netronome SmartNIC is not required in our experiment.

Notation. We clarify the notations used in system interpre-
tations (Figure 8). Table 5 shows processed features used
in Clara-MS, where IMEM indicates SRAM-based internal
memory and EMEM indicates DRAM-based external mem-
ory on SmartNICs. Instructions can be classified into Stateful
(e.g., loads and stores to global variables in memory) and Non-
Stateful (e.g., compute instructions, or accesses to function-
local variables). Moreover, Overall Intensity represents the
sum of IMEM, EMEM and Compute Intensity.

D.3 Pensieve
Pensieve [51] is a system that learns adaptive bitrate (ABR)
algorithms automatically using RL technique. The online
videos are stored on servers as multiple chunks (a few seconds
of the video) and each chunk is encoded at several discrete
bitrates (resolutions). Specifically, Pensieve adopts A3C [57]
to perform RL training. Both the actor and critic networks use
the same NN structure which contains a 1D-CNN layer and a
fully connected layer. The actor takes recent network observa-
tions as input and suggests the bitrate for the next video chunk
as the output. Content providers employ ABR algorithms to
optimize user quality of experiment (QoE) which is defined
as:

QoE =
N

∑
n=1

q(Rn)−µ
N

∑
n=1

Tn−
N−1

∑
n=1
|q(Rn+1)−q(Rn)| (4)

where Rn represents the bitrate of the nth chunk and q(Rn)
maps that bitrate to the quality perceived by a user. Tn repre-
sents the rebuffering time and the last term penalizes changes
in video quality to favor smoothness.

Implementation. We employ the same server used in Clara
for the Pensieve experiment. The video server is based on
Apache httpd (Version 2.4.41) and uses Google Chrome (Ver-
sion 96) as the client video player. We use 142 Norway HS-
DPA [68] network traces (provided by the authors) for evalu-
ation, in addition, we process another 249 FCC [3, 54] traces

Notation Description

Xt Past chunk throughput
Tt Past chunk download time
Nk Next chunk sizes
B Current buffer size
C Number of chunks left
L Last chunk bitrate

Table 6: Notation descriptions of Pensieve.

(2018 version, follow the same preprocessing pipeline) for
model generalization evaluation. Because the original FCC-
18 network speed is much faster than HSDPA and we cannot
distinguish the performance difference among algorithms, we
scale down the network speed by 4 times to keep consistent
with FCC-16 with regards to the median values.

We obtain PrDT model through distilling from the trained
RL actor model (pre-trained model that Pensieve authors pro-
vided). After that, we implement PrDT (written in JavaScript)
into ABRController of dash.js [2] (Version 2.4). For the test
videos, we use the same video in Pensieve at bitrates in {300,
750, 1200, 1850, 2850, 4300} kbps (which pertain to video
modes in {240, 360, 480, 720, 1080, 1440}p). This video
is divided into 48 chunks and each chunk represented ap-
proximately 4 seconds. Furthermore, we adopt q(Rn) = Rn in
Equation 4 to set linear QoE as the our evaluation metric.
Notations. We clarify notations used in system interpreta-
tions (Figure 12). Table 6 shows environment state variables
used in Pensieve to generate bitrate decision, where Xt and
Tt denotes past sequences of throughput and download time
respectively (t = 1, · · · ,8). Moreover, Nk represents sequence
of next chunk sizes (k = 1, · · · ,6).

E Artifact
PRIMO and case study scripts are available as below. To repro-
duce the main results of this work, we also provide detailed
documentation and instructions in the artifact repository.

Artifact Links

GitHub: https://github.com/S-Lab-System-Gr
oup/Primo
DOI: https://doi.org/10.5281/zenodo.65298
92

USENIX Association 2022 USENIX Annual Technical Conference 537

https://github.com/S-Lab-System-Group/Primo
https://github.com/S-Lab-System-Group/Primo
https://doi.org/10.5281/zenodo.6529892
https://doi.org/10.5281/zenodo.6529892

	Introduction
	Background and Motivation
	Learning-Augmented Systems
	Challenges and Motivation
	Model Interpretation as a Solution
	Interpreting Black-box Models.
	Building Interpretable Models

	Primo Design
	Framework Overview
	Interpretable Models
	PrAM: Addictive Model based Method
	PrDT: Decision Tree based Method

	Model Training
	Bayes Optimization
	Distill Engine

	Post-Processing Optimization
	Monotonic Constraint
	Counterfactual Explanation

	Case Study 1: LinnOS
	System Interpretation
	Performance Analysis
	Effectiveness Analysis

	Case Study 2: Clara
	System Interpretation
	Performance Analysis
	Model Adjustment

	Case Study 3: Pensieve
	System Interpretation
	Performance Analysis

	More Evaluation
	Discussion
	Related Work
	Conclusion
	Supplementary Elaborations
	PrAM: Explainable Boosting Machine
	PrDT: Minimal Cost-Complexity Pruning

	Insufficiency of Existing Methods
	Contradictory Interpretation
	Incapability for Global Surrogate

	Lessons Learned From the Case Studies
	More Details about the Evaluated Systems
	LinnOS
	Clara
	Pensieve

	Artifact

