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ABSTRACT
While recent deep learning workload schedulers exhibit excellent
performance, it is arduous to deploy them in practice due to some
substantial defects, including inflexible intrusive manner, exorbi-
tant integration and maintenance cost, limited scalability, as well as
opaque decision processes. Motivated by these issues, we design and
implement Lucid, a non-intrusive deep learning workload scheduler
based on interpretable models. It consists of three innovative mod-
ules. First, a two-dimensional optimized profiler is introduced for
efficient job metric collection and timely debugging job feedback.
Second, Lucid utilizes an indolent packing strategy to circumvent
interference. Third, Lucid orchestrates resources based on estimated
job priority values and sharing scores to achieve efficient schedul-
ing. Additionally, Lucid promotes model performance maintenance
and system transparent adjustment via a well-designed system op-
timizer. Our evaluation shows that Lucid reduces the average job
completion time by up to 1.3× compared with state-of-the-art pre-
emptive scheduler Tiresias. Furthermore, it provides explicit system
interpretations and excellent scalability for practical deployment.

CCS CONCEPTS
•Computer systems organization→Cloud computing; •Com-
puting methodologies→ Planning and scheduling.
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1 INTRODUCTION
Over the past decades, Deep Learning (DL) presents incredible
performance and rapid popularity across many applications, in-
cluding image classification [54], recommendation [96], etc. To
facilitate DL model development, IT companies and research insti-
tutes often build large-scale multi-tenant DL clusters [31, 42, 98].
The cluster scheduler is dedicated to managing these expensive
infrastructures and regulating various DL workloads. Several recent
works have proposed schedulers tailored for DL training workloads
[11, 31, 42, 73, 76, 97, 98, 100], and demonstrated their remarkable
performance in improving computation resource utilization and job
training efficiency. However, there exist significant gaps (G1∼G5)
in deploying them in practice from two perspectives.

First, to achieve better system performance, most state-of-the-
art approaches rely on preemption-enabled scheduling paradigms,
such as migration [97], elasticity [44] and adaptive training [76].
Nevertheless, owing to their inevitable intrusive mechanism, they
meet the following barriers in deployment:
• G1: Inflexible and error-prone. In order to realize elastic train-
ing and job checkpointing, existing schedulers require users to
import specific libraries and modify their codes to implement these
mechanisms [44, 67, 73, 76, 97]. Such user-code intrusive approaches
not only burden users with complex logic of model training control
but also potentially incur uncertain bugs. Additionally, they also
greatly limit users’ flexibility in customizing their codes since the
scheduler takes over the training workflow. As stated by Microsoft
[84], “most DNN training workloads today as such are not check-
pointable or resizable.” The generalization issue also hinders the
practical application of intrusive schedulers.
• G2: High integration and maintenance cost. It is nontrivial to
shift a research prototype into a production-level system. Typically,
integrating a scheduler design into a commercial or open-source
cluster management system requires an expert team with enor-
mous efforts and costs to handle all the possible issues. Further, to
support advanced scheduling features, some schedulers [44, 84, 97]
require the modification of the source code of the underlying DL
frameworks (e.g., Pytorch [71]) or CUDA library [94]. They need
continuous maintenance to accommodate to the fast version itera-
tion of DL ecosystems. The exorbitant integration and maintenance
cost are impractical for most companies and research institutes.
• G3:Model quality degradation of adaptive training. To strive
for extreme training efficiency, some schedulers [11, 57, 76] adap-
tively adjust the job batch size and learning rate according to the
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allocated resources. However, this can degrade the quality of the
final model in terms of validation performance [51, 108]. In commer-
cial applications, minor quality improvement drives a significant
increase in customer engagement and company profits [43]. There-
fore, developers are not prone to adopt this mechanism due to the
degradation issue.

Second, plenty of schedulers adopt machine learning (ML) based
methods [42, 60, 74, 92, 100] or optimization-based methods [30, 65–
67, 107] to find the optimal scheduling policy. However, they also
suffer from significant flaws in practice:
• G4: Limited scalability. As workloads become more intensive
and clusters become larger-scale, these schedulers [19, 30, 66, 67, 74,
92, 93] meet the scalability bottleneckwhen deployed in production-
level systems. For instance, Gavel [67] spends thousands of seconds
solving a 2048-job allocation problem through linear programming,
which takes too long to meet the real-time requirement [66]. Rein-
forcement Learning (RL) based schedulers also confront the same
issue: Metis [93] only affords to handle dozens of jobs while pro-
duction clusters can run thousands of jobs concurrently.
• G5: Opaque decision making and hard to adjust. Most ML-
based schedulers are built on black-box models such as Random For-
est (RF) [32, 52], Gradient Boosting Decision Tree (GBDT) [42, 100]
and RL [74, 92]. Developers mainly focus on improving key sched-
uling metrics (e.g., makespan) while ignoring their interpretability.
The prediction processes of these model are unintelligible to hu-
mans [33, 55, 81]. Due to such opacity, system operators cannot
guarantee model predictions are reliable and have insufficient con-
fidence to deploy them. In addition, ad hoc debugging and system
configuration tuning are also substantial challenges to both the ML-
based and optimization-based schedulers. Improper modifications
may cause severe performance degradation [41].

To bridge these gaps, we design Lucid, a non-intrusive and trans-
parent scheduler that can provide better performance than preemp-
tive and intrusive schedulers. The core design of Lucid derives from
the following three insights. First, it is feasible to address the cluster
GPU underutilization issue in a non-intrusive manner. Since GPUs
are commonly underutilized across production-level DL training
clusters [42, 48, 95], existing DL schedulers pack jobs to increase
the utilization through an intrusive manner [10, 67, 97, 100, 103].
However, by comprehensively analyzing job colocations, we find
it is possible to achieve efficient job packing without any intru-
sion. Second, forecasting job duration from prior history is attainable.
Since a majority of workloads follow recurrent patterns and users
tend to submit similar tasks multiple times [42, 95], we can estimate
the duration of new jobs based on their profiled features and histor-
ical submission data. Third, system interpretability is indispensable
and can deliver performance improvement. Comprehensive under-
standing of system behaviors can enhance operators’ confidence for
practical deployment and provide transparent performance tuning.

Incorporating the above observations, we design Lucid to mini-
mize the average job completion time (JCT), improve the resource
utilization and shorten the debugging feedback delay in DL clus-
ters. It consists of three key scheduling modules along with the
corresponding interpretable models (Figure 4). Specifically, (1) we
propose a two-dimensional optimized Non-intrusive Job Profiler to
collect job resource usage features, including GPU utilization, GPU
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Figure 1: Background. (a) GPU utilization distribution in
an Alibaba cluster [98]. (b) Exponential growth of NVIDIA
datacenter GPU capability. x-axis: GPU name & release year.

memory footprint and GPU memory utilization. It achieves timely
debugging job feedback and highly efficient job metric collection
where profiling takes only minutes in a non-intrusive manner. (2) In
the job packing stage, we introduce an indolent and dynamic pack-
ing strategy for Affine-jobpair Binder to circumvent interference
and maximize the cluster-wide job speed. (3) A Workload Estimate
Model assigns a priority value to each job for the following Re-
source Orchestrator. Besides, Lucid integrates an Update Engine for
model performance maintenance and System Tuner for transparent
adjustment and system enhancement.

To extensively assess the performance of Lucid, we conduct eval-
uations in a physical cluster and perform large-scale simulations
with three production traces from SenseTime [42] and Microsoft
[48]. Experimental results show that Lucid significantly improves
the average JCT by 5.2∼7.9× compared with the non-intrusive pol-
icy FIFO. Even compared with the state-of-the-art intrusive policy
Tiresias, Lucid obtains average JCT and queuing delay improve-
ment by 1.1∼1.3× and 1.8∼9.1× respectively. In addition, Lucid
successfully copes with the aforementioned deployment problems
(G1∼G5) and achieves the following desirable properties:
• A1: Efficient non-intrusive scheduling. The workflow of Lucid
is preemption-free and requires no intrusion to the codes of users’
jobs or DL frameworks. Meanwhile, Lucid outperforms several
SOTA intrusive schedulers.
• A2: Low deployment cost. Lucid can be easily integrated into ex-
isting commercial or open-source cluster management systems (e.g.,
Slurm [101], Kubernetes [15]). It also has no demand for continuous
maintenance of DL framework or CUDA library updates.
• A3:Model performance preservation. Users take full control
over their models and Lucid never tampers with model configura-
tions, fully preserving their original quality.
• A4: Scalability to large-scale cluster. Even for massive and
complex workloads, the system can obtain the optimal scheduling
policies swiftly (within several milliseconds).
• A5: Transparent system tuning. All the modules are inter-
pretable, helping developers make guided system configuration
adjustments and bringing extra improvement.

To the best of our knowledge, Lucid is the first DL job scheduler
that considers system interpretability and focuses on system prac-
tical deployment. We systematically summarize the deficiencies of
existing works (G1∼G5) and propose an end-to-end solution to
overcome them. And we demonstrate the non-intrusive scheduler
can outperform intrusive approaches in production-level clusters.
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Figure 2: Motivation. (a) Accumulated GPU utilization of
colocated jobpairs against average speeds. (b) Average effect
of batch size and mixed-precision to packing performance.

2 BACKGROUND AND MOTIVATION
In this section, we first provide a brief introduction to the essen-
tial terminologies of DL training and cluster scheduling. Then we
highlight the characteristics of DL clusters and job colocation that
inspire the design of Lucid.

2.1 Background
DL Training. A DL model learns its parameters (i.e. weights) in
an iterative process [58, 97]. In each iteration, it operates on a
batch of labeled data to update model weights through gradient
descent. The whole training process usually consists of numerous
mini-batch iterations and can last for hours to days, which can
be preempted and resumed via checkpoints [61, 72]. Based on the
repetitive pattern, operators can profile a few iterations to obtain
the resource utilization features of the job. Unlike prior profiling-
based DL job schedulers [30, 31, 62] that rely on intrusive libraries to
inspect job execution status, Lucid collects metrics non-intrusively.
DL Cluster Scheduling. It is a common practice for tech compa-
nies and research institutes to build multi-tenant DL clusters to
facilitate DL model development. In many companies [42, 48, 95],
the cluster is usually divided into several Virtual Clusters (VCs)
dedicated to different product groups. Users submit DL training
jobs into the cluster with related configurations (e.g. GPU demand,
CPU demand, job name).

A DL cluster scheduler is adopted to regulate the resources and
job execution. To improve resource utilization and minimize the
average JCT, most existing DL cluster schedulers [11, 31, 73, 76,
97, 98, 100] are intrusive: they implement some advanced features
through modifying DL frameworks or relying on user-code adap-
tation. There are two common advanced features: (1) job packing
(i.e., job colocation, GPU sharing) allows multiple tasks to share
the GPU using the NVIDIA MPS [5] or MIG [4] technologies. (2)
elastic training dynamically adjusts the scale of GPU workers and
even modifies the batch size and learning rate adaptively to accel-
erate the job training progress [11, 76]. However, they have several
significant drawbacks as mentioned in §1 (G1∼G3).

2.2 Characteristics of DL Clusters
Low GPU Utilization. Recent works [97, 98, 100, 103] show a
common phenomenon that most GPUs are underutilized in DL
clusters. Figure 1 (a) shows the Cumulative Distribution Function
(CDF) of one-week GPU usage statistics collected from an Alibaba
datacenter [98]. The GPU memory consumption is normalized by

0.4 0.6 0.8 1.0
Normalized Speed

ResNet-18
PointNet

ResNet-18
PPO

ResNet-18
LSTM

ResNet-18
DCGAN

ResNet-18
ResNet-18

0.98

0.95

0.59

0.60

0.65

0.90

1.00

0.79

0.71

0.65

(a)

0.4 0.6 0.8 1.0
Normalized Speed

8

4

2

1

8

4

2

1

G
PU

 N
um

be
r

0.94

0.94

0.96

0.95

0.54

0.54

0.54

0.55

(b)

ImageNet
(ResNet-50)
CIFAR-10
(EfficientNet)

Figure 3: Packing Examples. (a) Colocate with ResNet-18. (b)
Two same jobs packing with different GPU numbers.

Table 1: Summary of models and datasets used in our experi-
ments. AMP: Enable/Disable mixed precision training.

Task Model Dataset Batch size AMP

✽ ResNet-50 [37] ImageNet [23] 32, 64, 128 +/-
✽ MobileNetV3 [40] ImageNet [23] 32, 64, 128 +/-
✽ ResNet-18 [37] CIFAR-10 [53] 32, 64, 128 +/-
✽ MobileNetV2 [82] CIFAR-10 [53] 32, 64, 128 +/-
✽ EfficientNet [86] CIFAR-10 [53] 32, 64, 128 +/-
✽ VGG-11 [85] CIFAR-10 [53] 32, 64, 128 +/-
❃ DCGAN [77] LSUN [102] 32, 64, 128 +/-
❉ PointNet [75] ShapeNet [16] 32, 64, 128 +/-
♦ BERT [24] SQuAD [78] 32 +/-
✦ LSTM [9] Wikitext2 [64] 64, 128 +/-
◆ Transformer [88] Multi30k [25] 32, 64 -
❖ PPO [83] LunarLander 32, 64, 128 -
❖ TD3 [28] BipedalWalker 32, 64, 128 -
★ NeuMF [38] MovieLens [36] 64, 128 +/-

CV: ✽ Img. Classification ❃ Img.-to-Img. Translation ❉ 3D Point Cloud Classification
NLP: ♦ Question Answering ✦ Language Modeling ◆ Language Translation
RL: ❖ Physics Control (Box2D) Recommendation: ★ Movie Recommendation

the memory capacity of the GPU. It is evident that only 16% of
the GPUs achieve higher than 50% GPU utilization. Additionally,
with the rapid evolution of GPU computing capability as shown in
Figure 1 (b), future GPUs can deal with more complex and larger-
scale DL training jobs. However, they also become more prone to
be underutilized for most small-scale or mid-scale jobs.
High-skewed Workload Distribution. Real-world production
DL clusters [42, 48, 95] present similar workload distributions: (1)
Small-scale. Over 95% jobs are single-node jobs (within 4/8 GPUs) in
Microsoft [48] and SenseTime [42]. (2) Recurring. Most jobs (∼90%)
are recurring hyperparameter searching jobs [95, 104]. (3) Debug-
ging. The majority of jobs are short-term for debugging purposes,
where nearly 70% of resources in Microsoft are occupied by failed
or canceled jobs. Users desire to obtain debugging job feedback
timely. However, the diversity of workloads is often ignored by
existing works and it lacks specific design for debugging jobs.

2.3 Opportunities for Efficient Non-intrusive
Scheduling

Characterizing Job Packing Interference. To understand the
interference effect of job packing, we conduct an extensive analysis
of various workloads (Table 1) with different configurations across
various domains, including computer vision, natural language pro-
cessing, reinforcement learning and recommendation. We place
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two DL workloads on the same GPU, and measure the performance
of all the possible combinations of job packing pairs. All the experi-
ments are performed on our testbed (§4.1) equipped with NVIDIA
RTX3090 GPUs and implemented with Pytorch 1.10 [71].

Figure 2 (a) shows the relationship between the GPU utiliza-
tion and speed of all measured jobpairs, as well as the fit curve
obtained through least-squares polynomial fit. The y-axis repre-
sents the average value of two normalized speeds and each orange
point represents one colocation measurement. Obviously, there
exists a strong correlation between the accumulative GPU utiliza-
tion and job interference. When the GPU utilization summation
reaches 100%, most jobpairs can still obtain over 0.8× speed (around
0.92× on average). More concretely, Figure 3 (a) shows some repre-
sentative cases of job packing (batchsize=64, AMP=0), where the
normalized speed indicates the ratio of colocated and exclusive job
speed. We can clearly observe that ResNet-18 barely has degrada-
tion when colocated with PointNet or PPO, while nearly 40% speed
degradation occurs when colocating with other workloads. Besides,
there should be less interference in the future GPU generations
(Figure 1 (b)).

As for parallel training jobs, different from stereotypes, we find
their colocation brings similar benefits to single-GPU jobs. For
instance, we depict the same job colocation effect of both the heavy
(blue bar) and light (orange bar) workloads in Figure 3 (b), where
every single GPU allocates consistent 64 mini-batches. We observe
that jobs of different scales within a single-node present equivalent
performance. Additionally, we also consider the effect of mixed
precision training. Figure 2 (b) indicates employing such training
manner can deliver extra job packing benefits sowe further consider
AMP in Lucid. We also consider the three-job packing situation and
find it typically suffers from acute speed degradation, which is in
line with previous work [67].
Non-intrusive Interference-aware Job Packing. All of exist-
ing packing-enabled DL schedulers rely on the intrusive paradigm.
Specifically, they modify DL frameworks [97, 98, 103] or require
user-code adaptation [10, 67, 100] to achieve introspective job pack-
ing. However, we find it is feasible to realize interference-aware
job packing non-intrusively. According to our characterization,
the non-intrusive GPU utilization metric should be sufficient for
schedulers to make packing decisions (Figure 2 (a)) and the packing
strategy is applicable to all single-node jobs (Figure 3 (b)), covering
over 95% workloads (§2.2). Notably, GPU utilization is defined as the
percentage of the time in a given sample interval where one or more
kernels are executed on a GPU instead of active unit percentage
[6, 100]. In addition to this, we adopt another two non-intrusive
features that can also help us make more precise decisions: GPU
memory utilization (percentage of time that memory was being read
or written over the past sample period) and GPU memory (memory
occupation on the GPU).
Job Duration Estimation. Recent DL cluster analysis works from
SenseTime [42] and Alibaba [95] find that a majority of workloads
have recurrent patterns and users tend to submit similar tasks
multiple times. This inspires us to leverage the historical log data
to predict job duration. In addition, profiled characteristics of job
resource utilization can also help us match them with previous
jobs more precisely, contributing to more accurate predictions and
better scheduling policies.
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Figure 4: Overview of Lucid system architecture. Each mod-
ule contains an interpretablemodel for keymetric prediction.
System optimizers are applicable to all components tuning.
Scheduling workflow and module dependencies are repre-
sented by black and red arrows respectively.

3 SYSTEM DESIGN
To provide an efficient and transparent scheduling policy in practice,
we design Lucid, a learning-augmented non-intrusive DL workload
scheduler for DL clusters. Below we introduce its architecture and
the detailed design of each module.

3.1 Overview
Principles & Goals. For practical and simple system adoption,
Lucid follows three design principles: (a) Non-intrusive. The whole
scheduling workflow follows a preemption-free manner and re-
quires zero user-effort and DL framework modification (solving
G1∼G3). (b) Scalable. The system can obtain scheduling policies
promptly for massive and complex workloads (solvingG4). (c) Inter-
pretable. All the modules are transparent and can be clearly adjusted
by the cluster operators (solving G5). Our primary objective is to
minimize average JCT for training workloads. This is particularly
desirable for DL users. Additionally, Lucid also improves resource
utilization and provides timely debugging feedback. Our future
work aims to serve more scheduling goals, such as fairness and
service-level guarantees.
Architecture & Workflow. Figure 4 illustrates Lucid’s architec-
ture along with the scheduling workflow. It consists of three key
scheduler modules (blue blocks) for workload scheduling, as well
as two system optimizers (purple blocks) for performance enhance-
ment and maintenance. For every module, there is a corresponding
interpretable model (orange blocks) in charge of forecasting key
metrics to assist scheduling. The system workflow of Lucid is pre-
sented by black arrows. Specifically, before allocated to the target
cluster, jobs need to be profiled first (❶). We adopt a Non-intrusive
Job Profiler to filter the majority of the test and debugging jobs.
Meanwhile, this module also records the resource usage statistics
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Algorithm 1 Space-aware Profiling
Input: New Job: J, Job Profiling Queue: Q
1: procedure Space-aware Profile(J, Q)
2: if J .𝑔𝑝𝑢 ≤ 𝑁𝑝𝑟𝑜𝑓 then ▷Job Scale limit
3: Enqueue J to Q
4: SortJobGPUNum(Q) ▷Sort by Least GPU First
5: CheckRunningJobs(𝑇𝑝𝑟𝑜𝑓 ) ▷Evict Overtime Running Jobs
6: for all Job ∈ Q do
7: if Consolidate(Job) is True then
8: ConsolidateAllocate(Job) ▷Job Start Profiling
9: Dequeue Job from Q
10: Non-intrusiveProfile(Job)
11: else
12: break

of normal training jobs and classifies them into different categories
(❷). After profiling, we design an Affine-jobpair Binder to deter-
mine whether and how to pack various jobs. It dynamically changes
the packing strategy according to the future cluster throughput
prediction (❸). Based on the profiled and user-provided features,
the Resource Orchestrator assigns a priority value to each job and
selects jobs for allocation (❹).
Inter-module Dependence. Lucid achieves overall desired sched-
uling performance via the collaboration of all the system modules.
Each single module without assistance from other modules cannot
provide desired performance (§4.5). We depict their interactions
in Figure 4 with red arrows: A Orchestrator adopts features from
Profiler for better duration estimation. Lucid cannot precisely match
previous recurrent jobs without profiled features. B The through-
put prediction model not only determines the packing strategy in-
side Binder but also assists Profiler cluster scaling, which efficiently
handles burst job submission cases. Jobs have to bear higher profil-
ing queuing delays without throughput prediction model. C Binder
requires the duration estimation fromOrchestrator to optimize pack-
ing decisions. It is significant to be time-aware during job packing
because long-term job packing sometimes deteriorates the HOL
(Head-of-line) blocking issue and prolongs JCT.

3.2 Non-intrusive Job Profiler
Lucid adopts the job profiling mechanism to optimize the succeed-
ing allocation strategy. The Non-intrusive Job Profiler sets a short-
term runtime limit 𝑇𝑝𝑟𝑜 𝑓 for each job and collects the hardware
metrics related to the job profiling, including GPU utilization, GPU
memory footprint and GPU memory utilization. These can be con-
veniently measured through NVIDIA-SMI [6] or DCGM [3] in a
non-intrusive way. Then the profiler sends these features to the
Packing Analyze Model (§3.5.1), which follows the non-intrusive
principle to proactively predict the effectiveness of packing instead
of measuring the throughput after colocation. To facilitate the subse-
quent job packing and resource allocation, instead of predicting the
numerical result of job colocations, Lucid classifies jobs into three
distinct categories (Tiny, Medium or Jumbo) and assigns each job a
Sharing Score (SS) to indicate its category. Specifically, Tiny (SS=0)
jobs refer to those with extremely low resource utilization and
they hardly suffer from colocation slowdown. Conversely, Jumbo
(SS=2) jobs require high resource utilization and decisions on their
colocation should be cautious. Packing of the Medium (SS=1) jobs
generally delivers a relatively minor impact on their training speed.
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Figure 5: Indolent Packing. Lucid non-intrusively determines
whether jobpairs are suitable for colocated execution (Blue
Points) or should be exclusive execution (Orange Points).

To improve profiling efficiency, we propose a two-dimensional
optimized profiling strategy that combines both the space consid-
eration of workload profiling to minimize queuing delay, and time
consideration of profiler cluster to maximize resource efficiency:
Space-aware Profiling. Due to the short profiling time limit𝑇𝑝𝑟𝑜 𝑓 ,
the time-scale of the workloads should be similar so we can focus on
optimizing their space-scale scheduling, which is never considered
by prior profiling-based DL workload schedulers [30, 31, 62]. By pri-
oritizing jobs that request fewer resources, the head-of-line (HOL)
blocking problem of small-scale profiling clusters can be efficiently
solved. Algorithm 1 shows the pseudo-code of our Space-aware
Profiling algorithm. Since the limited GPU resource is typically
the bottleneck of DL training jobs, we sort jobs according to their
GPU demands (line 4). Then we adopt exclusive and consolidated
allocation policy (line 8) to reduce resource fragmentation [42].
Time-aware Scaling. To guarantee resource availability for pro-
filing, the profiling cluster is typically decoupled from the main
computing cluster. However, due to the time-variant pattern of
job submissions, the static profiling configuration may lead to se-
vere queuing delay and resource imbalance. To this end, we pro-
pose Time-aware Scaling that dynamically adjusts the job scale
limit 𝑁𝑝𝑟𝑜 𝑓 , profiling time limit𝑇𝑝𝑟𝑜 𝑓 and profiling cluster capacity
𝐶𝑝𝑟𝑜 𝑓 based on current states as well as future cluster-wide job
throughput prediction. For instance, when a burst of jobs occur in a
short time, the profiler will temporarily loan some nodes from rela-
tively idle VCs and reduce 𝑇𝑝𝑟𝑜 𝑓 . Resources will be returned when
cluster throughput decreases and the burst job queue eliminates.

Note that profiling is required for most jobs, except large-scale
distributed ones that exceed the job scale limit 𝑁𝑝𝑟𝑜 𝑓 . Lucid collects
the metrics of those large jobs on the fly without profiling. Addi-
tionally, we assume the job initialization or data movement time
does not exceed𝑇𝑝𝑟𝑜 𝑓 , otherwise the profiler cannot obtain correct
resource consumption features. To support such jobs, operators
should prolong the 𝑇𝑝𝑟𝑜 𝑓 setting accordingly or endow users the
right to mark their jobs as “Long Cold-Start” jobs to extend 𝑇𝑝𝑟𝑜 𝑓 .

Contrary to the common opinion that profiling brings extra
queuing delay and resource demand [100], our profiling mechanism
possesses the following superiorities: (a) Timely Feedback. Plenty of
short-term debugging jobs suffer from severe queuing delays (§2.2)
due to the runtime-agnostic scheduling paradigm of currently de-
ployed clusters [42, 48, 95]. Whilst Lucid’s profiler can well resolve
this issue and improve the job fairness. (b) Effortless. Lucid does not
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Algorithm 2 Lucid Resource Orchestrator
Input: Job Queue: Q, Running Jobs: J
1: procedure LucidSchedule(Q, J)
2: for all J ∈ Q do
3: 𝑃𝑟𝑒𝑑 = WorkloadEstimateModel(J)
4: J .𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = J .𝑔𝑝𝑢 × 𝑃𝑟𝑒𝑑 ▷Assign Priority
5: SortJobPriority(Q) ▷Sort by Job Priority (Ascending Order)
6: if CheckSharingStrategy() is True then
7: for all J ∈ Q do ▷Job Placement with Sharing
8: P = CheckAffineJobPair(Q ∪ J)
9: if P is not ∅ then
10: if ConsolidateWithShare(J, P) is True then
11: ConsolidateWithShareAllocate(J, P)
12: Dequeue J from Q
13: else
14: TryExclusivePlacement(J)
15: else
16: TryExclusivePlacement(Q) ▷Sharing Disabled

rely on any intrusive metric (e.g., job progress, time-per-iteration)
and requires zero code modification. (c) System performance en-
hancement. The profiler can filter out most failed or debugging jobs
for the main cluster and thus significantly facilitate the scheduling
optimization by diminishing the optimization space.

3.3 Affine-Jobpair Binder
Different from previous packing-enabled schedulers [10, 67, 97, 98,
100] that apply user-code or DL framework intrusive approaches to
identify jobpairs with interference, Lucid determines the packing
jobpairs under the non-intrusive principle according to the profiled
features. To this end, Lucid designs the following two strategies in
Affine-jobpair Binder.
Indolent Packing. Lucid only packs jobs that are not likely to
cause interference. Although such an inactive way may miss some
optimization opportunities, it can effectively refrain from interfer-
ence and provide packing incentives for users. Specifically, Indolent
Packing sets GPU Sharing Capacity (𝐺𝑆𝑆 ) for each GPU, which
restricts the summation of packed jobs’ Sharing Score below 𝐺𝑆𝑆

(default value = 2). Besides, Lucid sets the following rules for job
packing: (1) it adopts a hard limit on GPU memory usage to prevent
the out-of-memory (OOM) issue; (2) it never packs jobs with differ-
ent GPU resource demands due to the straggler effect of parallel
training; (3) it combines up to two jobs on a set of GPUs since pack-
ing over three jobs generally will not bring extra benefits [67]; (4) it
introspectively evicts packed jobs if an unstable resource utilization
pattern is detected; (5) distributed jobs will not be packed by default
due to network contention. Figure 5 depicts the binder decisions of
all possible jobpair combinations listed in Table 1. It is obvious that
Lucid efficiently identifies jobpairs with little interference, where
over 98.1% packable jobpairs are interference-free (threshold: 0.85
of normalized speed) and 87.0% packing opportunities are found
with such non-intrusive policy.
Dynamic Strategy. Existingworks [10, 67, 97, 98, 100] usually keep
a fixed strategy on job packing without cluster-wide awareness.
However, most clusters [42, 79] present diurnal patterns on the job
submission rate (throughput) and cluster utilization. When clusters
are relatively idle, the ignorance of cluster throughput may cause
unnecessary job packing and prolong the job training progress.

falsetrue

Tiny

Medium

Jumbo

GPU Utilization (%)

GPU Memory Utilization (%)

GPU Memory Usage (MB)

Mixed Precision Training (binary)

Figure 6: Packing Analyze Model. Left: Visualization and
interpretation. Right: Feature importance and notation.

For this reason, we develop Throughput Predict Model (§3.5.2) to
perform a time-series forecast on both the number of cluster jobs
and GPU request throughput. Based on its prediction and current
cluster states, when the current cluster throughput is relatively
low (customizable) and not likely to increase in the future, we
can dynamically adjust the packing strategy from Default Mode
(𝐺𝑆𝑆 = 2) to Apathetic Mode (𝐺𝑆𝑆 = 1), and even disable job sharing
temporarily for faster job completion.

3.4 Resource Orchestrator
To minimize the average JCT and increase resource utilization,
Lucid employs Resource Orchestrator to manage cluster resources
and orchestrate workload execution. The main challenge is to solve
the HOL blocking problem, where long-running jobs have exclusive
access to the GPUs until they are finished, keeping short-term jobs
waiting in a queue [97]. The rule of thumb is to prioritize short-
term jobs like the Shortest-Job-First (SJF) policy[31], whereas it
is impossible to obtain perfect job duration information in reality.
Besides, previous intrusive prediction paradigm [67, 73, 97] (i.e.
iteration time measurement) can be misleading due to the high
cancellation and failure rates of DL training jobs [42, 48]. However,
as mentioned in §2.3, a majority of workloads are repetitive and we
can leverage prior data to train Workload Estimate Model (§3.5.3) to
provide job duration estimations for scheduling.

Resource Orchestrator comprehensively considers both temporal
and spatial aspects of DL jobs. Algorithm 2 illustrates the job sched-
uling and resource allocation procedure. First,Workload Estimate
Model predicts the duration of each job and then the prediction is
multiplied by the number of GPUs as the job’s priority value (line
4). This additional consideration of job resource consumption (GPU
demand) can efficiently improve scheduling performance [31, 42].
Next, the job queue is sorted according to the priority values. Then
it checks whether job packing is allowed at the current moment
(line 6). (1) If not, jobs are allocated in an exclusive manner (line
16). We apply the consolidate placement strategy to maximize the
training speed of each job and reduce resource fragmentation. (2)
If yes, we pack jobs suitable for colocation, and eliminate jobs with
little remaining runtime (line 7). Besides, for new jobs without his-
torical information, Lucid can generate an estimation for the new
job based on the user’s historical behavior. If it is submitted by a
new user, Lucid can use the average duration of all the jobs with the
same GPU demands as the duration prediction [42]. Further, after
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Figure 7: Throughput Predict Model (a & b): Global interpretation of overall feature importance and the learned shape function
of hour (blue line). Workload Estimate Model (c): Local interpretation of features’ contribution for one prediction.

the new job is terminated, Update Engine collects its information
and uses the up-to-date data to fine-tune the model. In this way,
jobs can be efficiently scheduled with less queuing and interference.

3.5 Interpretable Models
In order to provide accurate prediction and transparent interpre-
tation for the cluster scheduling, Lucid employs Primo [41] inter-
pretable models as the foundation for each scheduler module.

3.5.1 Packing Analyze Model. Inspired by LinnOS [35], which mod-
els SSD storage latency prediction as a binary classification problem,
we introduce Sharing Score scheme to simplify interference predic-
tion into a ternary classification problem for high scalability and
intelligibility. Specifically, for each workload (Table 1) combination,
we measure the exclusive and mutual colocation throughput to
obtain a normalized speed. Then we assign a Sharing Score to each
model configuration based on its colocation influence on others. A
job is regarded as Tiny if its average normalized speed is greater
than a customizable tiny job threshold (e.g., 0.95), and Medium if
the speed is between tiny and medium job thresholds. Otherwise,
the job will be labeled as Jumbo. We adopt the Decision Tree (DT)
model for job category prediction to discover the common rela-
tionship between resource usage and job colocation features. DT
can provide a transparent decision process and excellent prediction
accuracy on this task. Besides, it requires less training data and
performs robustly under dynamic system environments [41]. We
leverage minimal cost-complexity pruning [14] to prune the learned
tree to obtain a compact and accurate model.

Interpretation: Figure 6 presents the learned Packing Analyze
Model. In addition to resource usage patterns (𝑈𝐺 , 𝑀𝐺 and 𝑈𝑀 ),
Lucid supports an optional metric (𝐴), allowing users to specify
whether to apply mixed precision training (e.g., torch.cuda.amp)
in their job submission command. From this tree, we can clearly
understand how Lucid classifies each job. We can also obtain an
intuitive cognition of the overall model behavior by observing the
depth of each decision path (arrow lines) and the right-side figure
(feature Gini importance). Obviously,𝑈𝐺 affects colocation behavior
most. Other metrics also assist to make a precise prediction.

3.5.2 Throughput Predict Model. We adopt a novel additive model
algorithm GA2M [59, 69] for cluster throughput prediction. GA2M

contains a series of shape functions 𝑓 (·) and has the form: 𝑦 =

𝜇 + ∑
𝑓𝑖
(
𝒙𝑖
)
+ ∑

𝑓𝑖 𝑗
(
𝒙𝑖 , 𝒙 𝑗

)
, where 𝜇 is the intercept (averaged

target value of training data) and 𝑓𝑖 𝑗 (·) represents the interaction
effect of features 𝑖 and 𝑗 . It provides comprehensive interpretations
for the prediction process since each shape function is unary or
binary and their combination is additive. To obtain precise future
throughput predictions, we extract time-related data such as the
trend (increasing or decreasing) and seasonality (periodic pattern)
of both cluster GPU demand and job submission through feature
engineering. In detail, we encode repetitive patterns (e.g., hour, date)
to explore the periodic variations. Besides, we calculate the average,
median and weighted soft summation values of throughput under
different rolling window sizes (e.g., 1 hour).

Interpretation: Figure 7 (a and b) presents the global interpreta-
tion of each feature importance and the learned shape function. It
depicts the learned model from Saturn trace, which outperforms a
series of complex black-box models (Table 7). From Figure 7 (a), we
find the hour and a series of augmented features related to 1 hour
ago play the most important roles in contributing to the model
prediction. Furthermore, Figure 7 (b) illustrates the learned shape
function of the hour feature, where each bin indicates a different
hour of a day except that bin 0 is given a default value. This figure
presents an obvious diurnal pattern which is excellently aligned
with our experience, giving reliable and accurate advice on cluster
configuration adjustment.

3.5.3 Workload Estimate Model. GA2M is also adopted for job
duration prediction. Specifically, the model extracts all features
(e.g., user name, job id, GPU demand) and the actual job duration
from the traces and encodes those categorical features. For the
extremely sparse and high-dimensional features like job names, we
utilize the Levenshtein distance [68] to convert them to relatively
dense numerical values and leverage affinity propagation [27] to
bucketize similar ones. For the temporal features like job submission
time, we parse them into several time attributes, such as month or
hour.

Interpretation: Figure 7 (c) presents the feature interpretation of
one job prediction from the Venus cluster in SenseTime [42]. The
prediction result is the sum of every feature score and the intercept
constant. Through the local interpretation, developers can clearly
check the model behavior on each prediction.
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Table 2: Summary of traces in large-scale simulations.

Trace Source #GPUs #Jobs Avg. Duration

Saturn [42] SenseTime (Sep. 2020) 2,080 101,254 13,006s
Venus [42] SenseTime (Sep. 2020) 1,080 23,859 5,419s
Philly [48] Microsoft (Oct. 2017) 864 12,389 25,533s

3.6 System Optimizer
3.6.1 System Tuner. A cluster scheduler typically contains multiple
parameters adjusted by system operators for better performance or
different scheduling objectives. Tuning those parameters requires
rich domain knowledge and manual efforts. Inappropriate adjust-
ments may lead to severe performance degradation. The DL clusters
in different companies and institutes have diverse workload types
and distributions. Hence, the corresponding manual system tuning
is necessary to obtain the optimal scheduling performance. Because
of the nature of the data-driven policy, Lucid can be clearly adjusted
via prior job and cluster information based simulation. Furthermore,
to optimize the performance of interpretable models, we adopt the
Pool Adjacent Violators (PAV) [8] algorithm to pose a monotonic
constraint [41] on the learned feature shape function based on the
model interpretability.

3.6.2 Update Engine. In practical production-level clusters, the
environments are dynamically changing, bringing workload and
cluster distribution drifts. Therefore, frequent model fine-tuning
or retraining is necessary to resolve the performance deterioration
issue induced by stale models. To this end, we design Update Engine
to adapt to the changes. It collects real-time system states, job logs,
and uses up-to-date data to fine-tune Lucid models periodically.

4 EVALUATION
In this section, we evaluate Lucid on a physical cluster and perform
large-scale simulations with three production traces.

4.1 Experimental Setup
Implementation. We implement Lucid with approximate 4700
lines of Python code. It leverages the gRPC [1] to achieve the com-
munication and control between the scheduler and workers. To
evaluate the performance of Lucid in a large-scale cluster with long-
term traces, we also implement a simulator to record job events
and resource usage. The simulator is provided with measured re-
source utilization and job speed information of all possible tasks,
including exclusive and colocated jobs. We confirm the simulation
fidelity in §4.2. All experiment results without explicit comments
are derived from the simulation. Besides, we implement Lucid in-
terpretable models based on Primo [41]. For experiment workloads,
we implement all models listed in Table 1 with Pytorch [71].
Testbed.We conduct physical experiments on a cluster of 4 servers
and 32 GPUs. Each server is equipped with dual-sockets Intel Xeon
Gold 6326 CPUs (64 threads, 256GB memory) and 8 NVIDIA RTX
3090 GPUs (24GB memory). All experiments are performed in the
environment of Ubuntu 20.04, Pytorch 1.10, CUDA 11.3 and cuDNN
8. Simulation experiments resemble the physical server configura-
tion and adjust the cluster scale according to the actual traces.
Traces. To investigate the performance of Lucid on different job dis-
tributions and various cluster scales, we adopt three real production-
level traces for comprehensive experiments, as summarized in Table

Table 3: Comparison between physical experiments and trace
simulation results regarding makespan and average JCT.

Scheduler Static (Makespan) Continuous (Avg. JCT )

Physical Simulation Physical Simulation

FIFO 11.56 hrs 11.34 hrs 8.17 hrs 7.97 hrs
SJF 11.27 hrs 11.02 hrs 4.59 hrs 4.46 hrs

Tiresias 9.23 hrs 9.68 hrs 4.03 hrs 4.16 hrs
Lucid 8.45 hrs 8.17 hrs 3.64 hrs 3.49 hrs

2. For two SenseTime traces, we use data from April-August as the
training and validation datasets, and September data as testset for
interpretable models. As for the Microsoft trace, we adopt the first
week of October as testset and afterward (October-December) as
the training and validation datasets. In order to reflect the actual
effect of the scheduler in practice, we keep the original job sub-
mission traces without any rescaling or modification. According
to the released cluster configuration, Saturn and Venus divide the
clusters into 20 and 15 VCs respectively. Since Microsoft does not
provide their VC configuration information, we set a reasonable
cluster scale (108× 8-GPU nodes) without making further VC sub-
divisions. As for workload type, we refer to the GPU utilization
distribution in Alibaba PAI [95, 98] and use a higher utilization
trace for evaluation, as shown in Figure 12 (a, orange line) Venus-M.
To be closer to reality, the long-term and large-scale jobs would be
more likely large model training (e.g., BERT, ResNet-50 in Table 1)
and vice versa. We apply hierarchical sampling to randomly assign
each workload a job type derived from Table 1.
Baselines.We consider the following baselines.

(1) First-In-First-Out (FIFO): a conventional policy widely adopted
by many popular cluster management systems (e.g., Yarn [89], and
Kubernetes [15]). It is simple but typically performs poorly due to
its runtime-agnostic scheduling paradigm.

(2) Shortest-Job-First (SJF): an ideal policy to minimize the av-
erage JCT without preemption by prioritizing short-term jobs to
overcome HOL blocking. It is impractical as it requires perfect job
information which is impossible to attain.

(3) Quasi-Shortest-Service-First (QSSF) [42]: a data-driven ap-
proach to prioritize short-term jobs through prediction. It achieves
efficient scheduling without preemption but relies on a black-box
ML model which is hard to troubleshoot.

(4) Horus [100]: a packing-enabled and data-driven policy that
predicts job resource usage through model analysis. It is intrusive
as it obtains ONNX [7] graph representation through user-code
intrusion and relies on a black-box ML model.

(5) Tiresias [31]: a preemptive policy that prioritizes least attained
service jobs (i.e., consumed GPU resources). Based on this design,
short-term jobs are prone to finish earlier without any prior infor-
mation. This is also intrusive as it requires user-code modification
to achieve job preemption.

We also consider the state-of-the-art elasticity-based scheduler
Pollux [76] and discuss its impact on model quality in §4.7. We do
not evaluate its performance in large-scale traces (§4.3) due to its
scalability issue. Specifically, it takes 30 minutes to handle a 160-
job trace (used in their evaluation) and over 3 hours for a 320-job
trace. It can not obtain the result within a reasonable time for our
105 ∼ 106 scale job traces.

464



Lucid: A Non-intrusive, Scalable and Interpretable Scheduler for Deep Learning Training Jobs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

100 102 104 106

(a) Venus: JCT (s)

0

20

40

60

80

100

Fr
ac

tio
n 

of
 J

ob
s 

(%
)

Better

100 102 104 106

(b) Saturn: JCT (s)

0

20

40

60

80

100

Fr
ac

tio
n 

of
 J

ob
s 

(%
)

100 102 104 106

(c) Philly: JCT (s)

0

20

40

60

80

100

Fr
ac

tio
n 

of
 J

ob
s 

(%
)

FIFO SJF QSSF Horus Tiresias Lucid

Figure 8: CDF of JCT using different scheduling approaches across three clusters: Venus, Saturn and Philly.
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Figure 9: Average job queuing delay using different scheduling approaches across each VC, where all indicates the whole cluster.

Table 4: Performance comparison of different scheduling ap-
proaches across 3 clusters with regard to average JCT, queu-
ing delay and tail delay. P99.9 indicates 99.9% percentile.

FIFO SJF QSSF Horus Tiresias Lucid

Average
JCT (hrs)

Venus 18.57 5.86 5.15 4.41 4.09 3.58
Saturn 14.21 2.36 2.41 2.13 1.89 1.79
Philly 36.85 9.41 9.03 10.49 9.02 6.84

Average
Queue (hrs)

Venus 15.30 2.59 1.88 1.14 0.82 0.25
Saturn 12.61 0.76 0.80 0.53 0.28 0.16
Philly 30.45 3.01 2.63 4.09 2.62 0.29

P99.9
Queue (hrs)

Venus 163.07 89.47 352.89 58.80 55.39 26.15
Saturn 56.39 39.20 137.82 36.03 26.62 19.28
Philly 117.55 101.60 125.57 223.47 98.80 71.22

4.2 End-to-End Evaluation on a Physical Cluster
To evaluate the performance of Lucid in practice, we conduct an
end-to-end experiment on a physical testbed. To generate the real
workload traces, we randomly sample jobs from the Venus trace.
Specifically, we generate a 100-job static trace where all jobs are
available at the beginning of the experiment, as well as an 120-
job continuous trace where jobs are submitted following a Poisson
distribution [67]. To evaluate the scheduling performance under
different job distributions, the continuous trace samples more long-
term jobs. Lucid profiles each job for at most 60 seconds and enables
job packing in the following resource allocation. We compare Lucid
against FIFO, SJF and Tiresias policies (Table 3). Lucid successfully
improves the average JCT by 2.3× on the continuous trace and
makespan by 1.4× on the static trace.

Table 5: Scheduling performance of large-scale (>8 GPUs)
and small-scale (≤8 GPUs) jobs in Venus.

Avgerage JCT (hrs) Average Queue (hrs)

FIFO Tiresias Lucid FIFO Tiresias Lucid

Large-scale Job 9.96 6.08 4.59 6.22 2.34 0.86
Small-scale Job 19.55 3.75 3.46 16.34 0.54 0.19

To verify the fidelity of our simulator, we further compare the
results of physical experiments with simulations. We find the simu-
lator can successfully reproduce the actual performance with an
error rate < 4.6% on both makespan and average JCT. This demon-
strates the high fidelity of our simulator.

4.3 End-to-End Evaluation on Large-Scale
Simulations

Weuse a simulator to assess the performance of Lucid on production-
level clusters over weeks to months (Table 2).
Overall Performance. Figure 8 shows CDF curves of the aver-
age JCT in each cluster with different scheduling algorithms. It
is evident that the Lucid curve almost overlaps with the curve of
preemptive and intrusive baseline Tiresias for long-term jobs, but
Lucid performs better for short-term jobs. This demonstrates the
preemption-free policy can obtain comparable performance as the
preemptive policy. From Table 4, Lucid improves the average JCT by
up to 1.3× compared with Tiresias, saving 2.2 hours for DL training
jobs on average.

Figure 9 presents the VC-level analysis of average job queuing
delay across three clusters. We select the top-8 VCs with the highest
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Figure 10: Scalability Analysis. (a) Scheduling latency (unit:
ms) under various numbers of jobs. (b) Model training time
(unit: s) across three clusters (y-axis in log scale).

average queuing time in Venus and Saturn since the other VCs have
little delay. Besides, Philly is not partitioned in our experiment
and thus has only 1 VC. We observe that Lucid presents stable
performance across each VC, while Tiresias is inferior in some
VCs (e.g., vcvGI in Venus). This derives from the high preemption
overhead and redundant checkpoint-resume decisions of Tiresias.
Table 4 shows Lucid achieves 1.8∼9.1× improvement on the average
queuing delay compared with Tiresias.

To check the effect of job packing on the resource utilization,
we sample the cluster-wide active GPUs every minute and record
their average values. Compared with the sharing-agnostic policy
Tiresias, Lucid obtains 9%∼17% GPU utilization and 7%∼24% GPU
memory usage improvement.
Tail Performance. Most existing schedulers focus on improving
the overall system performance while ignoring the worst cases.
This may sacrifice partial jobs and cause unfairness. Table 4 pro-
vides the queuing delay of 99.9% percentile jobs for each algorithm.
Lucid consistently outperforms Tiresias by 1.4∼2.1× across three
clusters. The extraordinary tail performance of Lucid demonstrates
its capability in handling long-tail and starvation issues.
Debugging Feedback. As mentioned in §2.2, there exist massive
debugging and test jobs in production clusters. These jobs generally
have very short duration and developers need timely feedback to
modify their codes accordingly. This can be successfully achieved
based on the profiler design of Lucid. Compared with Tiresias, Lucid
greatly mitigates the number of queuing short-term jobs (≤60s) by
4.1∼24.8×, which efficiently improves user experience.
Fine-grained Analysis. To evaluate the scheduling effect on differ-
ent scale workloads, we summarize their average JCT and queuing
delay in Table 5. Lucid obviously outperforms Tiresias for both large
and small jobs, which demonstrates large jobs will not experience
starvation in Lucid scheduling.

4.4 Scalability Analysis
For practical deployment of DL schedulers, it is significant to con-
sider their scalability to handle massive workloads and large-scale
cluster resources.
Scheduling Latency. We have successfully performed the end-
to-end evaluation of Lucid across three production-level clusters
with thousands of GPUs and long-term traces as shown in Table
2. According to our experiment records, the average job queue
length is 10∼12 and the maximum length is 119∼340 among these
clusters. As shown in Figure 10 (a), we measure the scheduling
decision latency under more intensive job quantities, where the
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inference latency of Lucid models is included. Even given 2048
jobs, the job allocation policy can be obtained within 3 ms, which
is sufficient for DL job scheduling. Conversely, when dealing with
2048 jobs, Gavel [67] needs to take around 30 minutes to solve
the linear programming problem [66]. Shockwave [108] and Muri
[107] also take seconds to minutes overhead on solver computation.
Compared with Lucid real-time scheduling, round-based paradigm
and excessive decision time seriously limit their deployment.
Training Overhead. In addition to short scheduling latency, the
ML model retraining overhead is another concern for system appli-
cation in practice. Lucid adopts Update Engine to collect the latest
data and update models periodically (e.g., daily or weekly). Figure
10 (b) depicts the training time of Workload Estimate Model and
Throughput Predict Model, where the training set contains 105 ∼ 107
samples across three clusters within half year. Owing to our trans-
parent and simple model designs, even dealing with million-scale
training data, it only takes up to 11 minutes to obtain the model. Be-
sides, Packing Analyze Model is cluster-agnostic and only takes less
than 1 second for training. The low decision latency and training
overhead verify the scalability of Lucid.

4.5 Micro-benchmarks
We explore the effects of each component in Lucid via ablation
studies, and perform sensitivity analysis of workload and system.
Impact of Binder. To examine the effect of Affine-jobpair Binder
introduced in §3.3, we compare and measure the performance of
Lucid when disabling Indolent Packing (w/o Binder) or job packing
(w/o Sharing) on the Venus cluster. As shown in Figure 11 (a),
Indolent Packing can deliver additional 1.4× queuing delay reduction
compared with the naive bin-packing policy. When job packing
is totally disabled, Lucid can still obtain over 2.0× reduction in
queuing delay compared with the SOTA non-intrusive QSSF. This
superiority derives from the unique profiling design and accurate
job duration estimation.
Impact of Estimator. We further evaluate the benefit of workload
duration estimation in Resource Orchestrator. As shown in Figure
11 (a), we disable the estimator-based optimization (w/o Estimator)
in both the job binder and orchestrator stages. It is obvious that job
runtime-awareness further reduces 2.2× job queuing delay com-
pared with the runtime-agnostic job sharing method. On the other
hand, the variant Lucid (w/o Estimator) still outperforms QSSF
owing to (1) Lucid profiler design efficiently prioritizes massive
short-term jobs to finish first, which greatly reduces the average
queuing delay; (2) Lucid binder still can pack training jobs with low
GPU utilization, which takes the majority (Figure 1). Moreover, we
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Figure 12: Sensitivity Analysis. (a) GPU utilization distribu-
tions of Alibaba PAI cluster [95, 98] and generated Venus
traces with Low/Median/High utilization. (b) Lucid schedul-
ing performance under various workload distributions.

Table 6: Sensitivity Analysis of Profiling Time Limit 𝑇𝑝𝑟𝑜 𝑓 .

Profiling Stage Overall

Finish Rate Queuing Delay JCT Queuing Delay

𝑇𝑝𝑟𝑜 𝑓 = 100 27.65% 21 13,087 1,074
𝑇𝑝𝑟𝑜 𝑓 = 200 44.61% 73 12,886 915
𝑇𝑝𝑟𝑜 𝑓 = 300 53.73% 175 13,160 1,222
𝑇𝑝𝑟𝑜 𝑓 = 600 64.40% 509 13,270 1,422

also depict the Optimal upper bound (all jobs without any queuing,
equals to average JCT of FIFO/SJF/QSSF minus their corresponding
average queuing delay) of non-intrusive schedulers with white dot-
ted bar in Figure 11. It is clear that the combination of all modules
in Lucid delivers close to optimal performance, as if there were no
queuing delays.
Impact of Profiler. We also investigate the influence of Non-
intrusive Job Profiler (§3.2). Based on the two-dimensional profiling
strategy, most jobs will be profiled while 23.3%∼55.4% jobs finish
early during the profiling stage across three clusters. Besides, the
average queuing delay in each profiling cluster is around 1 minute,
indicating the profiler can handle most jobs with no severe latency.
Figure 11 (b) further shows the effect of Space-aware Profiling (S.A.
in short, y-axis represents queuing time). To conduct fair compari-
son, we disable the Time-aware Scaling mechanism and set 𝑇𝑝𝑟𝑜 𝑓
to 500s and 𝑁𝑝𝑟𝑜 𝑓 to 36 for each cluster. The space-aware approach
can provide up to 11.6× improvement compared with the naive
profiling mechanism adopted in other works [30, 31, 62].
Sensitivity Analysis of Workload Distribution. One major con-
cern of Lucid is whether it only applies to low cluster-wide GPU
utilization scenarios. Figure 12 (a) shows the GPU utilization dis-
tribution of an Alibaba cluster (i.e. PAI, gray line) in practice. We
generate three types of traces for evaluation: Venus-M is applied in
our end-to-end experiments (§4.3); Venus-L is designed to mimic
the Alibaba cluster utilization scenario; Venus-H represents a high
GPU utilization trace. As shown in Figure 12 (b), even if all three
traces are heavier than PAI, Lucid obtains better scheduling per-
formance (1.8∼4.2× in queuing delay reduction) compared with
Tiresias. This verifies Lucid can maintain excellent performance in
various scenarios.
Sensitivity Analysis of System Configuration. System hyperpa-
rameters can affect scheduling performance. To this end, we explore
Lucid’s sensitivity to 𝑇𝑝𝑟𝑜 𝑓 (profiling time limit), binder thresholds
and model update interval. (1) 𝑇𝑝𝑟𝑜 𝑓 . Table 6 shows the scheduling
performance under different 𝑇𝑝𝑟𝑜 𝑓 settings (100s∼600s) in Venus.
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Figure 13: Prediction Visualization. (a) Throughput Predict
Model for job submission prediction in Saturn. (b) Workload
Estimate Model for job duration estimation in Venus.

Table 7: Model Performance. Lucid outperforms popular
black-box models across Throughput Predict Model (MAE)
andWorkload Estimate Model (𝑅2 score) in Venus.

Models RF LightGBM XGBoost DNN Lucid

Throughput Predict 4.607 4.491 5.807 5.132 4.125
Workload Estimate 0.101 0.230 0.332 0.181 0.413

We observe that the higher 𝑇𝑝𝑟𝑜 𝑓 allows more job completion but
also incurs longer queuing delays during the profiling stage. It af-
fects profiler behaviors a lot but performs stable on overall JCT. We
set the default value of 𝑇𝑝𝑟𝑜 𝑓 as 200s because the time is sufficient
for most job profiling and will not incur a heavy queuing delay in
the profiler. (2) Binder Thresholds. The thresholds for (Medium,
Tiny) jobs are heuristic knobs adjustable by system operators. Op-
erators can set lower thresholds for higher cluster efficiency, or
higher thresholds for less interference. We try several reasonable
settings by varying Medium (0.75∼0.85) and Tiny (0.90∼0.97), and
find the average JCT is robust (<3.6% difference) in Venus. It is
because Lucid Indolent Packing strategy can efficiently prioritize
non-interference jobs and lightweight jobs occupy the majority.
We choose (0.85, 0.95) as the default value because it can well bal-
ance job packing opportunity and interference. (3) Model Update
Interval. Compared with the static model without any update, Lu-
cid periodical model update (weekly) can reduce queuing delay by
4.8% in Venus September evaluation period. More frequent updates
(daily) can bring an additional 1.6% improvement. Weekly update
interval typically is sufficient in most scenarios to update workload
information at a low maintenance cost.

4.6 Interpretable Model Evaluation
Since Lucid is a learning-augmented DL job scheduler, the per-
formance of ML models is critical to the scheduler. For system
transparency and simplicity, we apply interpretable models for all
the prediction tasks (§3.5).
Model Performance. Figure 13 (a) presents cluster-wide job through-
put prediction on Saturn September. We observe that our prediction
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can precisely reflect the actual trend with small estimation errors,
which laid the foundation for dynamic system scaling and tuning.
Figure 13 (b) depicts Lucid duration estimation on each job in Venus.
Due to too many jobs, we randomly sample 10% jobs for clearer
visualization. It is evident that Lucid can well distinguish long-term
and short-term jobs, although there exist some gaps between actual
duration and final prediction. Our experiment demonstrates such
performance is sufficient for providing good scheduling decisions.

Many researchers have the prejudice that there exists a trade-
off between accuracy and interpretability. In fact, interpretability
often begets accuracy, and not the reverse [81]. We provide compre-
hensive evaluations of Lucid models with a series of popular ML
algorithms: Random Forest (RF) [13], LightGBM [50], XGBoost [18]
and DNN [56]. We use the default hyperparameters for baseline
algorithms. Table 7 presents MAE (Mean Absolute Error, lower is
better) scores of Throughput Predict Model and 𝑅2 (Coefficient of
Determination, higher is better) score of Workload Estimate Model
job duration estimation in Venus. We find our models deliver the
best performance, bringing better scheduling policy and cluster
performance. For relative simple ternary classification task of Pack-
ing Analyze Model, DT is sufficient to provide equivalent accuracy
(94.1%) with other more complex baselines.
System Adjustment. Lucid provides simple and intuitive expla-
nations for system tuning. Based on guided tuning, we adjust the
configurations of Non-intrusive Job Profiler according to the trace
data of the previous month. Compared with heuristic tuning re-
sults, it reduces the average queuing delay at the profiling stage by
2.8∼8.7× with negligible influence on job filtering and debugging
feedback. For the model troubleshooting, we pose monotonic con-
straint on the gpu_num feature in Workload Estimate Model, which
obtains 2.6% 𝑅2 score improvement and reduces 3.9% queuing delay.

4.7 Comparison with Elastic Scheduler
We further compare Lucid with the state-of-the-art elastic sched-
uler Pollux [76] under increasing workload intensity in terms of
the rate of job submissions. We use the author-provided traces for
evaluation, where intensity=1.0 represents 160 jobs in total. Figure
14 (a) presents the results that Lucid can deliver better performance
when the workload becomes more intensive. Pollux is more suitable
for lighter workload intensity because its adaptive job batch size
and resource scaling techniques are limited when clusters are over-
loaded. More importantly, Pollux cannot guarantee no accuracy
degradation for all models while Lucid can well preserve model
quality as shown in Figure 14 (b). Pollux induces over 2% accuracy

decrease in EfficientNet training which is often unacceptable in
practice (G3) [108].

4.8 Takeaways
Lucid exhibits excellent performance in our extensive evaluations.
We summarize some key points that could improve the scheduler
performance and hope to inspire future scheduler design.
• Workload awareness — Profiler. Existing works [30, 31, 62]
typically regard retrieving job runtime information as the only
function of the profiler. However, because short-term jobs take the
majority of DL workloads, we find that the profiling mechanism
works well on such workload distribution, which will not incur
huge extra queuing delays or resource demands. Based on our
profiler design, most debugging jobs are filtered during the profiling
stage, which significantly facilitates the scheduling optimization
by diminishing the optimization space. Besides, Lucid can deliver
better duration estimation compared with QSSF based on additional
profiled features.
• Resource awareness — Binder. Many works, like Tiresias,
ignore the opportunity of leveraging underutilized GPUs. Lucid
provides an interference-aware job packing mechanism in a non-
intrusive way that efficiently improves resource utilization and
reduces job queuing (Figure 11). Besides, Lucid realizes the resource
demand changes over time, thus dynamically adjusting the packing
strategy and profiling resource scale to improve cluster efficiency.
• Runtime awareness —Orchestrator. Based on our observation
that a majority of workloads have recurrent patterns and users
tend to submit similar tasks multiple times, Lucid can provide
job runtime estimation to optimize the scheduling plan. On the
contrary, Tiresias (i.e., Discretized Least Attained Service) adopts
runtime-agnostic scheduling (FIFO in each queue), which can incur
frequent superfluous preemption. The job checkpointing and cold-
start overhead are also high, which takes 62 seconds per preemption
on average [31]. According to our evaluation in Venus, preemption
causes an additional 13% queuing overhead.

5 RELATEDWORKS
DL Job Schedulers. Schedulers tailored for DL training work-
loads have been actively researched in recent years [11, 31, 42,
73, 76, 97, 98, 100] and many of them adopt job packing to im-
prove resource utilization. Gandiva [97] leverages online-profiling
to introspectively determine whether to co-locate jobs on an accel-
erator. AntMan [98] enables more fine-grained GPU sharing with
dynamic scaling techniques. Salus [103] implements two primi-
tives fast job switching and memory sharing for more efficient GPU
sharing. Horus [100] converts user models into ONNX [7] graph
representations and extracts workload features to determine job
packing. Distinct from these works, Lucid supports job packing in
a non-intrusive scheduling paradigm.

Beyond GPU sharing, Gavel [67] and Gandiva𝑓 𝑎𝑖𝑟 [17] focus
on leveraging the heterogeneity of GPU generations to improve
resource utilization. CODA [106] designs a feedback-based adap-
tive CPU allocation algorithm for DL training jobs. Similarly, Syn-
ergy [65] allocates CPU and memory resources according to the
workload sensitivity to these resources. Muri [107] exploits multi-
resource interleaving to improve resource utilization and reduce

468



Lucid: A Non-intrusive, Scalable and Interpretable Scheduler for Deep Learning Training Jobs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

JCT. Lucid currently only considers homogeneous GPU as the dom-
inant resource. Inspired by these novel works, we believe Lucid can
be extended to support heterogeneous GPU and affiliated resource
(e.g., CPU, networking) scheduling optimization in the future.
Prediction-based Schedulers. Conventional cluster management
systems [15, 39, 89] collect job runtime estimations provided by
users to schedule workloads, which is inaccurate and often results
in cluster inefficiency. Prior works leverage historical job informa-
tion to predict job durations and optimize scheduling decisions.
The prediction can base on the recurrent jobs [21, 22, 47, 49], or
job structure knowledge [12, 26, 46, 90, 91]. For more general cases,
some schedulers [20, 70, 87] make the prediction from the history
of relevant jobs. In DL clusters, Helios [42] characterizes SenseTime
workloads and finds that using a LightGBM [50] model to predict
job duration can improve scheduling performance. MLaaS [95] also
notices the prevalence of recurring jobs in Alibaba and uses Deci-
sion Tree to predict job duration, delivering less than 25% prediction
error for 78% instances. Lucid further leverages profiled features to
enhance prediction precision and considers its interpretability.
Interpretability of Systems. Interpretability is important for
users to trust ML model behavior and deploy ML-driven systems.
Metis [63], DeepAid [34] and Lemna [33] design toolkits to improve
system transparency by interpreting black-box ML models. Fur-
thermore, Unicorn [45] adopts causal inference to find effective
repairs. In recent resource management research, Sinan [105] em-
ploys LIME [80] to identify important features of its hybrid model
and Sage [29] dedicates to performance degradation reasoning of
microservice. In contrast to them, Lucid adopts Primo [41] frame-
work which directly builds interpretable models instead of putting
effort to understand the black-box process.

6 CONCLUSION
In this paper, we propose Lucid, a non-intrusive deep learning
workload scheduler based on interpretable models. Specifically, we
design a two-dimensional optimized profiler and indolent packing
strategy for efficient job metric collection and interference avoid-
ance. Besides, Lucid orchestrates resources based on estimated
job priority values and promotes model performance maintenance.
Compared with the state-of-the-art intrusive scheduler Tiresias
(obtains an average job completion time of 9.02 hours on Microsoft
trace), our experiments demonstrate that Lucid successfully reduces
it to 6.84 hours, which is 1.32× better.

In the future, we plan to improve our work in two directions. (1)
Supporting more scheduling objectives like fairness [62, 99, 108]
and SLO-guarantee [30] to further improve user experience. (2)
Adding heterogeneous GPU selection optimization by more fine-
grained profiling for clusters with various GPU generations. Besides,
we plan to fully exploit affiliated resources (e.g., CPU).
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact appendix describes how to reproduce main results in
our Lucid paper. In our public repository, we provide the source
code, related dataset and the instructions to perform artifact evalu-
ation. Please refer to the README.md file for more details.

A.2 Artifact Check-List (Meta-information)
• Program: Python; Shell Script.
• Model: Lucid Model: Decision Tree and GA2M; Workload Model:
Listed in Table 1.

• Data set: Job Traces: SenseTime Helios and Microsoft Philly; Work-
load Dataset: Listed in Table 1.

• Run-time environment: Ubuntu 20.04 with Python 3.9, Pytorch
1.10, CUDA 11.3 and cuDNN 8.

• Hardware: Each server is equipped with dual-sockets Intel Xeon
Gold 6326 CPUs (64 threads, 256GB memory) and 8 NVIDIA RTX
3090 GPUs (24GB memory).

• Execution: Refer to README.md file.
• Metrics: Average job completion time; Average job queuing delay.
• Output: Performance results and figures of baselines and Lucid.
• Experiments: Reproduction of cluster Venus results.
• How much disk space required (approximately)?: 10GB.
• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour.

• How much time is needed to complete experiments (approxi-
mately)?: 2 hours.

• Publicly available?: Yes.
• Code licenses?: S-Lab License.
• Data licenses?: Creative Commons Attribution 4.0.

A.3 Description
A.3.1 How to Access. To reproduce the main results of this work,
we provide code and detailed documentation of Lucid in the artifact
repository as below [2].

Artifact Link

GitHub: https://github.com/S-Lab-System-Group/Lucid
DOI: https://doi.org/10.5281/zenodo.7275326

A.4 Installation
Please refer to README.md file for detailed instructions.

1 git clone https://github.com/S-Lab-System-Group/Lucid.git

2 conda create -n lucid python=3.9

3 conda activate lucid

4 cd Lucid/simulation

5 pip install -r requirements.txt

A.5 Evaluation and Expected Results
Scheduling Performance. The results generated in experiments of
the artifact can be matched with the results in Table 4, Table 5,
Figure 8 and Figure 9.
Model Evaluation. The interpretable model results can be matched
with Table 7, Figure 7 and Figure 13.
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